
The OMAC API Open Architecture
Methodology

EXECUTIVE SUMMARY

Open modular architecture controllers technology o�ers great potential for integration of process improve-
ments and better satisfaction of process requirements. With an open architecture, controllers can be built
from best value components from best in class services. The need for open-architecture controllers is high,
but vendors are slow to respond. One reason for the delay in industry action is that no clear open-architecture
solution has evolved. In an e�ort to promote open architecture control solutions, a workgroup within the
Open Modular Architecture Controller (OMAC) users group is working on de�ning an OMAC Application
Programming Interface (API). The goal of the OMAC API workgroup is to specify standard APIs for a
set of open architecture controller components. This document contains background information, design
methodology and actual API de�nitions.

As background, the following material will be presented:
� OMAC API de�nition of open architecture

� advantages and impediments to open architectures

� overview of the OMAC API reference model.

At a high level of conceptual design, the OMAC API reference model will be presented and includes the
following items:

� OMAC API core modules

� application framework

� application design and examples.

The OMAC API reference model does not speci�cy a reference architecture. Instead, modules can be freely
connected. In lieu of a reference architecture, the document includes several reference examples.

At a detailed level of design, the OMAC API speci�cation methodology will be presented and subscribes
to the following principles:

� API programming abstraction is used

� Object Oriented techniques for encapsulation, inheritence, specialization and object interaction are
applied

� Client/Server is the communication model

� Proxy Agents provide transparency of distributed communication

� Finite State Machine (FSM) is the behavior model

� Finite State Machine (FSM) are passed as data to then provide control

� Reusability of software components is achieved through foundation classes

� System objects are mirrored in human machine interface

� No speci�cation of an infrastructure is attempted instead a commitment to a Platform + Operating

System + Compiler + Loader + Infrastructure suite is necessary for it to be possible to swap modules.

1 BACKGROUND

Most Computer Numerical Control (CNC) motion and discrete control applications incur high cross-vendor
integration costs and vendor-speci�c training. On the other hand, in a modular, standard-based, open-
architecture controller modules can be added, replaced, recon�gured, or extended based on the functionality
and performance required. Modi�cations to a module should provide equivalent or better functionality as well
as o�er di�erent performance levels. Ideally, the module interfaces should be vendor-neutral, plug-compatible
and platform independent.

However, it is important to note that openness alone does not achieve plug-and-play. One vendor's idea
of openness need not be the same as another vendor's. Openness is but one step towards plug-and-play. In
reality, plug-and-play openness is dependent on a standard. This leads to the following de�nition of an open
architecture controller:

An open architecture control system is de�ned and quali�ed by its ability to satisfy the following requirements:

Open provides ability to piece together systems from components, ability to modify the way a controller
performs certain actions, and ability to start small and upgrade as a system grows.

Modular refers to the ability of controls users and system integrators to purchase and replace controller
modules without unduly a�ecting the rest of the controller, or requiring extended integration engineer-
ing e�ort.

Extensible refers to the ability of sophisticated users and third parties to incrementally add functionality
to a module without completely replacing it.

Portable refers to the ease with which a module can run on di�erent platforms.

Scalable allows di�erent performance levels and size based on the platform selection. Scalability means
that a controller may be implemented as easily and e�ciently by systems integrators on a stand-alone
PC, or as a distributed multi-processor system to meet speci�c application needs.

Maintainable supports robust plant
oor operation (maximum uptime), expeditious repair (minimal down-
time), and easy maintenance (extensive support from controller suppliers, small spare part inventory,
integrated self-diagnostic and help functions.)

Economical allows the controller of manufacturing equipment and systems to achieve low life cycle cost.

Standard Interfaces allow the integration of o�-the-shelf hardware and software components and a stan-
dard computing environment to build a controller. Standard interfaces are vital to plug-and-play.

Degree of openness can be evaluated by comparing a claim of openness against the above requirements.
Herein, the concept of an open-architecture control system that supports openness, and the auxiliary re-
quirements will be identi�ed as \open, openness or open architecture."

No approval or endorsement of any commercial product by the authors or their employers is intended or implied.

Certain commercial equipment, or materials are identi�ed in this report in order to facilitate understanding. Such

identi�cation does not imply recommendation or endorsement by the authors or their employers, nor does it imply

that the materials or equipment identi�ed are necessarily the best available for the purpose.

This publication was prepared, in part, by United States Government employees as part of their o�cial duties and

is, therefore, a work of the U.S. Government and not subject to copyright.

2

1.1 Advantages of Open Architecture Technology

Based on speci�c instances of problems encountered by users of proprietary controllers, the following list of
open-architecture requirements was generated. An open architecture should be able to do the following:

� provide a migration path from existing practices;

� allow an integrator/end user to add, replace, and recon�gure modules;

� provide the ability to modify spindle speed and feed rate according to some user-de�ned process control
strategy;

� allow access to the real-time data at a predictable rate up to the servo loop rate;

� allow full 3-D spatial error correction using a user-de�ned correction strategy;

� decouple user interface software and control software and make control data available for presentation;

� provide communication functions to integrate the controller with other intelligent devices;

� increase the ability for 3rd party software enhancements. Examples of 3rd party enhancements include:

{ replace a PID control law with a more sophisticated Fuzzy Logic control law

{ collect servo response data with a 3rd party tool, and set tuning parameters in the appropriate
control law

{ add a force sensor, and modify the feed rate according to a user de�ned process model

{ perform high resolution straightness correction on any axis

{ replace the user interface with a 3rd party user interface that emulates a user interface familiar
to your machine operators.

The initial validation strategy for the OMAC API would be to insure that this list of capabilities can be
addressed.

1.2 Impediments to Open Architecture Technology

It is di�cult to de�ne a speci�cation that is safe, cost-e�ective, and supports real-time performance.
A speci�cation must factor in current practices, as well as anticipate evolving technologies. To be suc-

cessful, the open architecture de�nition must be implementable with current computer technology and skills.
Further, an open architecture speci�cation cannot be so rigidly de�ned as to preclude future technology
upgrades. An open architecture speci�cation must be able to grow.

Of great importance within the controls domain is the requirement for guaranteed, hard-real-time perfor-
mance. Without this, safety is at risk. Safety is a major concern voiced within the controller industry which
is especially concerned with the issues of liability and allocation of responsibility within an open architecture
paradigm. New industry practices would have to be adopted for open architecture controllers. A greater
responsibility would be placed on the integrator. Conformance testing would play a larger role. Conformance
could require regression and boot-up testing and veri�cation procedures to guarantee proper operation.

A further hindrance is the fact that modules are not \self-contained." De�ning an infrastructure within
which the modules can operate is necessary and quite di�cult. We consider the infrastructure to be de�ned
as the services that tie the modules together and allow modules to use platform services. The infrastructure
is intended to hide speci�c hardware and platform dependence; however, this is often di�cult to achieve.

Containing the scope of the speci�cation is also di�cult. Openness goes beyond run-time APIs. There
can be \other" APIs, including con�guration, integration, and initialization. As an example, consider the
simple use of a math library API. Even there, speci�cation of the math library implementation must be done
to select either a
oating point processor or software emulation.

3

A

A

Axis Group

- multi-axis coordination
- block look-ahead
- velocity profile generation
- feedhold
- stop
- kinematic compensation

Control Plan Generator

- part program conversion to
control plan format

Control Law

- trajectory following (loop clo-
sure)
-gain tuning

Task Coordinator

-finite state machine interpreta-
tion for overall control
- mode switching
- handle task coordination pro-
grams (e.g., SFC programs)
- discrete logic and motion coor-
dination
- control cycling, (i.e. request
next unit from control plan)

Discrete Logic

- finite state machine interpreta-
tion for discrete control
- perform simple PLC functions

Human Machine Interface

- system snapshot
- event handling
- configuration screens
- diagnostic screens
- maintenance screens
- program editing

Axis

- trajectory following that uses
control law components
- servo compensation
- kinematic compensation

Kinematics

- kinematics calculations
- tool offsets, tool radius correc-
tion
- coordinate system translations
- kinematics coordinate transfor-
mation

Process Model

- feedrate override
- thermal compensation
- sensor integration
- dynamic offset (e.g. sensing
inputs) and overrides

IO Points

- read/write data
- data subscription
- data notification

Machine-to-Machine

- start-up, shutdown
-transfer file across network
- program invocation and job
control (e.g., start, stop, pause,
etc. program)
- event monitoring
- domain-independent data sam-
pling

Control Plan

- graph of Control Plan Units
- units are control instructions
- units act as finite state machine
- units act as intelligent agents

SchedulingUpdater

- timing
- sequence of operation
- sychronization
- updating

OMAC Base Class

- startup, shutdown sequencing
- error-logging, naming, version
control
- directory and naming service

Capability

- coordination control plan unit
- corresponds to NC operating
modes
- operates independently of
other capabilities

Figure 1: OMAC API Core Modules

Finally, group and industry dynamics can be a problem. From a workgroup perspective, getting people
to agree can be a challenge because there are di�cult trade-o�s in modularization, scope-covered,life cycle
bene�ts to be realized, costs, time to market, and complexity. It is recognized that industry will �nd
it di�cult to adopt the OMAC paradigm, due to entrenchment in the legacy of prior implementations,
the \comfort zone" of past practice and culture, the investment hurdle to e�ect change, and the shortage
of skilled resources. Proper acculturation, training and education of people and an orderly introduction,
demonstration, robustization, motivation, and scale-up will be needed to realize the potential bene�ts. From
an industry perspective, many companies do not perceive any direct bene�t from an open architecture.
Overcoming the workgroup inertia and industry skepticism by promoting and articulating the bene�ts of
open architecture remains a fundamental key to open architecture acceptance.

2 REFERENCE MODEL

The OMAC API requirements were derived from the OMAC or \Open Modular Architecture Controller"
requirements document [OMA94]. The OMAC document describes the problem with the current state of
controller technology and prescribes open modular architectures as a solution to these problems. OMAC
de�nes an open architecture environment to include Platform, Infrastructure, and Core Modules. `

OMAC API de�nes a module to have the following characteristics:

� signi�cant piece of software used in composing controller

� grouping of similar classes

� well-de�ned API

� well-de�ne states and state transitions

4

� replaceable by any piece of software that implements the API, state and state transitions.

Using the OMAC speci�cation model as a baseline, Figure 1 diagrams the OMAC API Core Modules
including a brief description of a module's general functional requirements. The Core Modules have the
following general responsibilities:

Task Coordinator modules are responsible for sequencing operations and coordinating the various motion,
sensing, and event-driven control processes. The task coordinator can be considered a �nite state ma-
chine (FSM) accepting directives one at a time from an operator or as a stored sequence of instructions
in the form of a Control Plan.

Control Plan Generator modules are responsible for translating the part program into a Control Plan.
Similarly, translations for IEC 1131-3[IEC93] programs and other formats are responsible for producing
Control Plans.

Axis Group modules are responsible for coordinating the motions of individual axes, transforming an
incoming motion segment speci�cation into a sequence of equi-time-spaced setpoints for the coordinated
axes.

Axis modules are responsible for servo control of axis motion, transforming incoming motion setpoints into
setpoints for the corresponding actuators.

Kinematics Models modules are responsible for kinematic transformations including geometric correction,
tool o�sets, and e�ects of tool wear. Computing forward and inverse kinematics, mapping and trans-
lating between di�erent coordinate systems, and resolving redundant kinematic solutions are examples
of kinematic model functionality.

Control Law components are responsible for servo control loop calculations to reach the speci�ed setpoints.

Human Machine Interface or HMI modules are responsible for remotely handling data, command, and
event service of an internal controller module. De�ning a presentation style (e.g., GUI look and feel,
or pendant keyboard) is not part of OMAC API e�ort.

Process Model is a component that contains dynamic data models to be integrated with the control sys-
tem. Process control components not speci�ed in this architecture produces adjustments or corrections
to nominal rates and path geometry in the form of this component. Feedrate override and thermal
compensation are examples of process model functionality. The process model is important to the
concept of extensible open systems.

Discrete Logic modules are responsible for implementing discrete control logic or rules that can be char-
acterized by a Boolean function from input and internal state variables to output and internal state
variables. More than one discrete logic module is permitted, but not necessary. Multiple discrete logic
modules is similar to having many PLC's networked together within the same computing platform.

I/O Points are responsible for the reading of input devices and writing of output devices through a generic
read/write interface. The goal is to provide an abstraction for the device driver. Logically related IO
may be clustered within a Discrete Logic module.

Scheduling Updater is a module that provides centralized scheduling functionality, that includes, timing,
synchronization and sequencing. This mechanism is provided since most real-time operating systems
do not explicitly provide sequences of periodic updating.

Control Plan is an aggregation of classes that form the basis of control and data
ow within the system.
A Control Plan Unit is a base class that contains instructions for a module. A Control Plan consists
of a graph of Control Plan Units. Motion Segment is a derived class of Control Plan Units for motion
control. Discrete Logic Unit is a derived class of Control Plan Units for discrete logic control. A
Control Plan Unit could be a Task Coordinator.

5

OMAC Base Class provides a uniform API base class for an OMAC module. The OMAC base class
de�nes a state model and methods for start-up and shutdown. The OMAC Base Class de�nes a
uniform name and type declaration and provides an error-logging interface. The OMAC Base Class
maintains a global directory service for name lookup and reference binding.

Capability is an object to which the Task Coordinator delegates for speci�c modes of operation. Capability
corresponds to traditional operating modes (AUTO, MANUAL, MDI, etc.) At Capability Level, there
is no coordination between Capabilities. The di�erence between a Capability and a Control Plan
Unit is subtle with the distinction between the two that a Capability is tightly coupled to a Task
Coordinator module. In fact, a Capability or a Control Plan Unit could itself be a Task Coordinator.
This interchange is possible since all are �nite state machines.

Machine-to-Machine modules are responsible for connecting and communicating to controllers across
di�erent domains (address spaces). An example of this functionality is the communication from a
Shop Floor controller to an individual machine controller on the
oor.

Some clarifying observations about modules include:

� Interchangeable modules may di�er in their performance levels.

� Modules may provide more functionality (added value) than required in the speci�cation. Specialization
of a module interfaces is the mechanism to achieve additional functionality.

� A controller may have more than one instance of a module.

� Modules can be explicitly control-related (e.g., Axis, Axis Group) or be service-related (e.g., OMAC
Base Class or Scheduling Updater) for capturing common functionality that is inherited.

� Modules do not need to run as separate threads (or intelligent agents.) Systems can be built from a
single thread of execution.

� Modules can contain multiple threads of execution.

� Modules may be used to build other components. For example, a discrete mechanism, such as a tool
changer component, can be built using the core OMAC modules.

� Multiple instances of a module are required to handle di�erent con�gurations. For example, assume a
system with 3 axis x,y,z and a spindle. One would create three Axes Group objects at con�guration
time, ag1, ag2, ag3, with the following con�guration:

ag1: x,y,z

ag2: spindle

ag3: x,y,z, spindle

For most machining where the motion control and the spindle are loosely related, a reference to ag1,

and ag2 would be used. However to do a Rigid Tap requiring tight synchronization of the spindle and
motion, a reference to ag3 would be used.

2.1 Reference Architecture

In the interest of
exibility, scalability, and reusability, OMAC API does not specify a �xed architecture.
Instead, OMAC API speci�es API for components to support the OMAC core modules. At a higher level,
the assembly of the OMAC modules into a system requires an integration architecture and an assembly
strategy described below for connecting modules. Suggestions are o�ered, but are not mandated.

OMAC API assumes a module assembly described by this abstraction hierarchy:

� Foundation Classes

6

Part Program
 Translator Line Arc

-x- -x-

Task

Axis

Axis1

Axis2

P V T

P V T

-C--C- -C-

Line Arc -x-

Sercos P V T

Software P V T

AM J

 Group

Coordinator

Nurb Weave-x-

Manual AutomaticJogging

D xyzKinematics

Nurb Weave

OMAC MODULE FRAMEWORK FRAMEWORK COMPONENTS

IO
Pts

IOIO 1 IO 2 ...

CanBus

IO IO...
IO

D/A

IO IO...

Figure 2: Control Framework

� Framework Components

� Core Modules

� Integration Architecture

� Application Architecture

The foundation classes are the building blocks that may be found in multiple modules. For example,
the class de�nition of a point would be found in most modules. Framework components are instances
of foundation classes that can be integrated into the core modules. For example, LinearPath or Circu-
larPath objects are framework components of a Control Plan Unit for motion. The core modules have the
functionality as previously outlined. An integration architecture describes a con�guration methodology for
component topology, timing, and inter-component communication protocols. An application architecture
speci�es components and interconnections selected for a particular application, from the choices allowed
by the generic or reference integration architecture. With the application architecture, users can develop
and run programs. Some candidate distributed reference architectures include the following: agent-based,
DCOM [DCO], CORBA [COR91], RCS [Alb91], OSACA [OSA96], or EMC [PM93].

2.2 Application Framework

In the OMAC API, an application control systems is built as a set of connected modules that use other
module services through the published API. The OMAC API speci�es module APIs aimed for the system
integrator. At this level, the system integrator links \.o" object �les (or linked libraries) to assemble a
controller. The .o's correspond to procured modules bought as commercial o�-the-shelf technology (COTS).
The assembly of OMAC API modules in such a manner is referred to as the framework paradigm.

Object-oriented frameworks are sets of prefabricated software and building blocks that are extensible and
can be integrated to execute well-de�ned sets of computing behavior. Frameworks are not simply collections

7

of classes. Rather, frameworks come with rich functionality and strong \pre-wired" interconnections between
the object classes.

This contrasts with the procedural approach where there is di�culty extending and specializing func-
tionality; di�culty in factoring out common functionality; di�culty in reusing functionality that results in
duplication of e�ort; and di�culty in maintaining the non-encapsulated functionality. With frameworks,
application developers do not have to start over each time. Instead, frameworks are built from a collection
of objects, so both the design and the code of a framework may be reused.

In the OMAC API framework the prefabricated building blocks are the COTS implementations of the
OMAC modules and framework components. As a simple example, Figure 2 illustrates a framework for a
typical controller application. An application developer buys the modules, and then the application developer
\puts the pieces together."

Within the example, there is a task coordinator module which has containers for inserting capabilities
(in the �gure represented by a -C- framed by a diamond). The capabilities include Manual, Automatic or
Jogging. The application developer is free to put one or more of these capabilities into the task coordinator
or develop a unique capability. For Control Plan Generator and Axis Group, the application developer is
already provided line and arc path descriptions but can plug in Nurb (Non-Uniform Rational B-Spline) or
Weave path descriptions. Once again, application developers could uniquely develop a path description. For
the Axis modules, the application developer has the possibility to do position (P), velocity (V) or torque
(T) control in software, hardware or some combination of hardware and software. For software P control,
the application developer would select a control law object from the Software set. For hardware P control,
the application developer would select a control law object from the Sercos set.

Using the OMAC API framework paradigm, application development involves three groups:

Users de�ne the behavior requirements and the available resources. Resources include such items as hard-
ware, control and manufacturing devices, and computing platforms. For behavior, the user de�nes the
performance and functionality expected of the controller. Performance includes such characteristics as
how fast or how accurate the application must be. Functionality de�nes the controller capability such
as the ability to handle planar part features versus complex part features.

System Integrators select modules and framework components to match the application performance
and functional requirements. The system integrator con�gures the modules to match the application
speci�cation. The system integrator uses an integration architecture to connect the selected modules
and veri�es the system operation. The system integrator also checks compliance of modules to validate
the user-speci�cation of performance and timing requirements.

Control Component Vendors provide module and framework component products and support. For
control vendors to conform to an open architecture speci�cation, they would be required to conform
to several speci�cations including the following:

� customer speci�cations

� module class speci�cation

� system service speci�cation

The system service describes the platform and infrastructure support (such as communication mech-
anisms) and the resources (disks, extra memory, among others) available. Computer boards have a
device pro�le that includes CPU type, CPU characteristics and the CPU performance characteristics.
Included within the pro�le is the operating system support for the CPU. A spec sheet or computing
pro�le [SOS94] is required to describe the system service speci�cation that would include such areas
as platform capability, control devices, and support software.

2.3 Application Design and Examples

A system design is divided into two phases. The �rst phase is Architectural Design and deals with the
decomposition of the system into subsystems (i.e., OMAC modules). This design activity corresponds to the
previous discussion on the OMAC Reference Architecture.

8

The second phase is called Detailed Design and is responsible for detailing individual object API, that
is, the object attributes and methods. At this phase, one determines which objects are available, the extent
of object capabilities, and whether the objects need to be bought or built. This phase corresponds to the
discussion on putting a system together with the OMAC Framework.

Since there is no explicit OMAC reference architecture, how to compose a system architecture from
OMAC modules is left to the developer. This o�ers much
exibility, but without guidance, can be con-
fusing. This section will give some application architecture examples for clari�cation. This section starts
with a simple applications and then develops a series of examples to illustrate the stages of development
one might encounter when building an application architecture. The examples will highlight the relations
between OMAC modules (as opposed to the data
ow.) However, one can assume that the architectures are
hierarchical and directives
ow from top to bottom.

2.3.1 Operator Control of a Set of IO Points Example

The simplest case is an operator controlling several IO points. The OMAC API model allows the connection
of an Human Machine Interface (HMI) object to several IO points. Figure 3 shows the simple connection
between HMI and IO points. The rationale for such a simple example is to show that the OMAC API is not
monolithic, and one can put a small system together. With this ability, OMAC systems can start small and
be pieced together.

HMI

IO POINTS

Figure 3: Operator Control of a Set of IO Points

2.3.2 One Axis Bootstrap

After establishing an HMI and IO connection, the natural progression in building an NC machine tool
controller is to add an axis of motion under manual control. This scenario is typical in o�ine assembly
and testing of an axis that may eventually be assembled in a multi-axis NC machine tool. Jogging and
Homing are the primary functionality used. At this point, there is no coordination with any other motion,
mechanism, or state in the NC machine tool. During this stage of the assembly of a machine tool, it is also
helpful to perform the calibration, tuning, or health monitoring tests.

Assume that the Axis module will consist of a PWM motor drive, an ampli�er enable control, an ampli�er
fault status signal, an A-QUAD-B encoder with marker pulse and switches for home and axis limits. Figure 4
shows a one-axis system that uses two Control Laws, one for PID control of Position, and another to do
PID control of velocity. The Axis will be outputing accelerations to the actuator and reading encoder values
through IO points referenced in the Axis module. For operator control of the axis, an HMI module mirrors
exiss for the Axis module as well as mirrors for each Control Law module. The mirrors provide a snapshot
of control system objects and use proxy agents for communication.

2.3.3 Programmable Logic Example

Next, let's consider a case of work-handling equipment that provides peripheral functions for an NC machine
tool. The equipment includes two hydraulically actuated, two-position on-o� mechanisms, named, Loader
and Unloader. Let their sensing, actuation, and control be under a Discrete Logic module, named LUNL whose
sequence of operations was originally speci�ed in some manner conforming to IEC 1131-3, and subsequently
translated into a Control Plan Unit, named CPlunl.

9

Axis
HMI

Axis

IO POINTS IO POINTS IO POINTS. . . .

PID
Control Law

(Velocity)

PID
Control Law

(Position)

Control Law
HMI

Control Law
HMI

Figure 4: One Axis Bootstrap

Discrete Logic
HMI

IO POINTS

Control Plan
Generator HMI

Control Plan
Generator

(IEC 1131-3)

IO POINTS IO POINTS. . . .

Discrete Logic
(LUNL)

Control Plan
(CPlunl)

Control Plan Unit

Programming
Phase

Run Time
Phase

Figure 5: Loader/Unloader Discrete Logic Control

Figure 5 illustrates the relationship of di�erent OMAC modules within this LUNL application. Within
the block diagram, two phases, Programming Phase and Run Tim Phase, are shown. However, there are
also other phases to be considered.c The following steps sketch the di�erent phases of system development.

1. In the Programming phase,

a. Given the IEC 1131-3 code, perform logical mapping onto IO and functions

b. Generate number of Control Plan Units (FSM), with one associated with each state. (Appendix
A contains a hypothetical FSM in table format.)

c. Group Control Plan Units to become a LUNL Control Plan

2. At con�guration phase,

a. Perform physical mapping IO and functions

b. Load Control Plan into the Discrete Logic Module

3. At initialization phase,

10

Kinematics

Kinematics

Axis Group

AXIS

IO POINTS

IO POINTS

Control Law

.
 .

Task Coordinator

Axis Group

Axis GroupKinematics

Process
Model

AXIS

IO POINTS

IO POINTS

Control Law

.
 .

Process
ModelProcess

Model
SpindleMotion

Control
Plan

Generator

Discrete
Logic

IO POINTS IO POINTS...
ControlPlanUnit

ControlPlanUnit

ControlPlanUnit

ControlPlanUnit

Methods

Methods

Methods

Methods Methods
Methods Methods

MethodsMethods

Methods Methods

Methods Methods

ControlPlanUnit

Methods

LEGEND

Tight Synchronizatino
of Motion and Spindle

Figure 6: Drilling Example

a. Resolve external object and module references

b. Register events

4. At runtime phase,

a. Clients (HMI or IO Points) generate events

b. LUNL FSM execution at Discrete Logic Module scan rate interprets each Control Plan Unit which
is an FSM.

2.3.4 Drilling Motion Control Example

To keep matters simple, an example describing programmed NC for one-axis drilling will be developed.
A typical one-axis drilling workstation would perform some holeworking operations, e.g., drilling with a
spindle drill-head, boring a precision bore, counter-boring the bored hole, probing the (axial) location of the
counterbored shoulder.

Figure 6 illustrates the module and component relationships for a drilling application. For drilling the
Axis motion control also requires coordinated motion supplied by an AxisGroup module. Another Axis
module is required for Spindle control. Spindle drive components are assumed to provide a facility for
setting spindle speed and direction and to start and stop spindle rotation. Another Axis Group to control
the Spindle is required, and one for controller both the Motion Axis and the Spindle Axis (shown as shaded
with dashed line connections). Generally, the Spindle Axis will not need a Control Law, however, when it is
synchronized with motion it will require servoed control.

In the diagram, a Task Coordinator exists to provide program control. A ControlPlanGenerator module
translates a part program into ControlPlanUnits. The primary command communication between modules is
re
ected in the digrams by showing the keyword \Method" or \ControlPlanUnits" (which uses a method to
pass it) next to an arrow. A Discrete Logic Module, typical of the previous example, exists as an equivalent
for part loading and unloading, as well as machine state (e.g., temperature, etop). To improve predictability
and reduce variation, a Process Model module will exist to integrate sensing and control to detect tool

11

breakage by monitoring spindle torques and thrust forces. A simple Kinematics module exists to model the
workspace and handle di�erent tool o�sets and part placements.

3 SPECIFICATION METHODOLOGY

To satisfy the OMAC open architecture speci�cation, a standard API for each of the Core Modules would
be de�ned. Consequently, the primary goal of the OMAC API workgroup is to de�ne standard API for
the Core Modules. This section will re�ne the concept of \API" and describe the OMAC API speci�cation
methodology. The API speci�cation methodology applies the following principles:

� Stay at API level of speci�cation. Use IDL to de�ne interfaces.

� Do not specify an infrastructure.

� Use Object Oriented technology.

� Use general Client Server communication model, but use state-graph to model state behavior.

� Use Proxy Agents to hide distributed communication.

� Finite State Machine (FSM) is model for data and control.

� De�ne Foundation Classes to foster the concept of reusable assets.

� Mirror system objects in human machine interface.

The following sections will discuss these principles.

3.1 API Speci�cation

API stands for Application Programming Interface, and refers to the programming front-end to a conceptual
black box. The math function \double cos(x)" speci�es the function name, calling sequence, and return
parameter, not how the cosine is implemented, be it table lookup or Taylor series. Of importance to the API
speci�cation is the function signature and its calling and return sequence, assuming of course, that cosine
doesn't take too long. Behavior is an explicit element within the API de�nition and relies on a de�ned
state transition model. A (standard) API is helpful because programming complexity is reduced when one
alternative exists as opposed to several. For example, the cosine signature is generally accepted as cos(x),
not cosine(x). This is a small but signi�cant standardization.

At a programmatic level, the importance of a standard API can be seen within the Next Generation
Inspection Project (NGIS) at NIST[NGI]. The NGIS project has integrated three commercial sensors and
one generic sensor into the Coordinate Measuring Machine controller. Taming diversity was a problem.
Each sensor had a di�erent \front-end" - one had a Dynamically Linked Library (.DLL) interface, one had
a memory mapped interface, one had a combination port and memory mapping. None of the sensors had
the same API. Yet, all of the sensors were \open."

There exists a problem selecting the API speci�cation language. The speci�cation language must be

exible enough to support a variety of implementation languages and platforms. OMAC API chose IDL, or
the Interface De�nition Language, for its speci�cation language [COR91]. IDL is a technology-independent
syntax for describing interfaces. In IDL, interfaces have attributes (data) and operation signatures (methods).
IDL supports most object-oriented concepts including inheritance. IDL translates to object-oriented (such
as C++ and JAVA) as well as non-object-oriented languages (such as C). IDL speci�cations are compiled
into header �les and stub programs for direct use by application developers. The mapping from IDL to any
programming language could potentially be supported, with mappings to C, C++, and JAVA available.

12

3.2 Object Oriented Technology

OMAC API uses an object-oriented (OO) approach to specify the modules' API with class de�nitions. The
following terms will de�ne key object-oriented concepts. A class is de�ned as an abstract description of the
data and behavior of a collection of similar objects. Class de�nitions aggregate both data and methods to
o�er encapsulation. An object is de�ned as an instantiation of a class. For example, the class SERCOS-Driven
Axis describes objects in the running machine controller. A 3-axis mill would have three instantiations of
that class { the three objects described by that class. An object-oriented program is considered a collection
of objects interacting through a set of published APIs. A by-product of an object-oriented approach is
data abstraction which is an e�ective technique for extending base types to meet the programmer needs.
A \complex number" data abstraction, for example, is certainly more convenient than manipulating two
doubles.

3.2.1 Inheritance

Inheritance is useful for augmenting data abstraction. OO classes can inherit the data and methods of
another class through class derivation. The original class is known as the base or supertype class and the
class derivation is known as a derived or subtype class. The derived class can add to or customize the features
of the class to produce either a specialization or an augmentation of the base class type, or simply to reuse
the implementation of the base class. To achieve a framework strategy, all OMAC API class signatures
(methods) are considered \virtual functions." Virtual functions allow derived classes to provide alternative
versions for a base class method.

Using an Axis module as a server, assume that all the axis does is set a variable x.

class Axis

f

virtual void set x(float x);

private:

double myx;

g

application()

f

Axis ax1;

ax1.set x(10.0);

g

To extend the server, a base class to add an o�set to its value before each set is derived. This could also
be achieved on the server side if so desired.

class myAxis : public Axis

f

virtual void set x(float x)f x= x + offset; Axis::set x(x); g

private:

double myx;

double offset; // set elsewhere for o�set calculation

g

application()

f

Axis ax1;

13

CommandedDotDot

Feedback

CommandedDot

Commanded

Output

FeedbackOFS

FollowingErrorOFS OutputOFS

TUNING PARAMETERS

FollowingError

Figure 7: General Control Law

myAxis ax2;

double val;

double offset;

val=10.0;

ax1.set x(val+offset); // explicit o�set in application code

ax2.set x(val); // o�set hidden by con�guration

g

3.2.2 Specialization

OMAC API leverages the OO concept of inheritance to use base and derived classes to add specialization.
When de�ning a control law, one has many options including PID, then Fuzzy, Neural Nets, and Nonlinear.
This plethora of options implies a need to contain the realm of possibilities. The OMAC API approach is to
de�ne a base type (generally corresponding to one of the OMAC Core Modules) and then add specialized
classes.

The control law module illustrates the base and derived class specialization. The responsibility of the
Control Law module is conceptually simple { use closed loop control to cause a measured feedback variable
to track a commanded setpoint value using an actuator.

Figure 7 illustrates the de�nition of a base control law. The concept of tuning is encapsulated within
the black box and is conceptually controlled via \knob turning." The concept of accepting third party
signal injection is handled by the inclusion of pre-and post-o�sets (or injection points). These o�sets allow
sensors or other process-related functionality to \tap" and dynamically modify behavior by applying some
coordinate space transformation. The IDL de�nition of the illustrated control law module follows. The IDL
keyword interface signi�es the start of a new interface, corresponding to a C++ class.

interface CONTROL LAW

f // Parameters

void set commanded(double setpoint);

double get commanded();

void set commanded dot(double setpointdot);

double get commanded dot();

14

KAF

Σ Output

Feedback

Kfeeback

FollowingErrorOFS

Σ

Σ

FeedbackOFS

KVF

KCF

.

OutputOFS

KP KI KD

PID Compensator

+
+ +

+

CommandedDotDot

CommandedDot

Commanded

FollowingError

+ Σ
-

TuneIn

calc_control_cmd()
break_loop()
make_loop()

Figure 8: PID Control Law

void set commanded dot dot(double setpointdotdot);

double get commanded dot dot();

void set output(double value);

double get output();

void set feedback(double actual);

double get feedback();

void set following error(double epsilon);

double get following error();

// O�sets

void set following error offset(double preoffset);

double get following error offset();

void set output offset(double postoffset);

double get output offset();

void set feedback offset(double postoffset);

double get feedback offset();

void set tune in(double value); // enable with break loop

double get tune in();

g;

Each CONTROL LAW specialization is a subtype whereby each subtype inherits the de�nition of the super-
type. By applying this concept, an evolutionary process evolves to adapt to changes in the technology. At
�rst, only highly-demanded subtypes, such as PID, were handled. Figure 8 conceptually illustrates the PID
specialization of the control law. The IDL de�nition of the PID control law follows.

15

interface PID TUNING: CONTROL LAW

f // Attributes

double get Kp();

double get Ki();

double get Kd();

void set Kp(double val);

void set Ki(double val);

void set Kd(double val);

double get Kcommanded();

double get kcommanded dot();

double get Kcommanded dot dot();

double get Kfeedback();

void set Kcommanded(double val);

void set kcommanded dot(double val);

void set Kcommanded dot dot(double val);

void set Kfeedback(double val);

g;

OMAC API also uses inheritance to maintain levels of complexity. Level 0 would constitute base function-
ality seen in current practice. Level 2 would constitute functionality expected of advanced practices. Level
3, 4,..., n would constitute advanced capability seen in emerging technology, but unnecessary for simple
applications.

3.3 Client Server Behavior Model

OMAC API adopts a client server model of inter-module communication. In the client/server model, a
module is a server and a user of a module is called a client. Modules can act as both a client and a server
and cooperate by having clients issue requests to the servers. The server responds to client requests. A client
invokes class methods to achieve behavior. A client uses accessor methods to manipulate data. Accessor
methods hide the data physical implementation from the abstract data representation. The server reacts to
the method invocation and performs the corresponding method implementation and sends a reply (either an
answer or a status) back to the client.

As a server, a module services requests from clients that can be immediately satis�ed or that may require
multiple cycles. Multiple cycle service requests require state space logic to coordinate the interaction. OMAC
API de�ne three types of service requests: (1) parametric requests, (2) command requests and (3) updating
requests.

Parametric service requests are generally the get/set methods and are, in theory, immediately satis�ed.
They do not require state space logic.

Command service requests are command methods which, assuming a di�ering subsequent command,
causes a change in the server's state space (or state transition) and results in a new server state. These
command requests may run one or many axis cycles - such as move to() absolute position. Repeated cycles
of the same command methods require a state transition mechanism for coordination between the client and
the server. Service requests require an FSM to coordinate the client server interaction.

Updating service requests coordinate the execution of a module, for example, processServoLoop() or
update() for Axis module. The processServoLoop function provides cyclic execution - e.g., axis module
is executed once per servo loop period. In this mode, the axis software would be running as a data
ow
machine: at every period, it accesses the data (e.g., commanded position, actual feedback) and derives a
new setpoint.

16

Updater
Process

Axis Group

Axis Module

Commanded
Methods
e.g. follow_velocity()

Timing, Synchronization and Sequence Methods
e.g. update(), or processServoLoop()

Client 1

Client 2

Server

Figure 9: Multiple Threads of Control

If an OMAC module is periodic, it may derive the method update() by inheriting it from the Scheduling
Updater class Updatable. For Axis, the method update() is a wrapper that calls processServoLoop.
The update() method simpli�es invocation for the updater since all modules have the same signature, the
updater can go down a list of modules and invoke one signature.

Client Command and Updating service requests may come from separate threads of control. Figure 9
illustrates a server with multiple clients running in two separate processes: an Axis Group process for issuing
setpoints and an Periodic Updater process to coordinate execution. (These processes may be running in one
or more threads.) Generally, the Commanded service requests would come from an Axis Group module that
is issuing setpoints to multiple axes. A Scheduling Updater module running in another thread of execution
provides timing, synchronization and sequencing service for the Axis module. This Scheduling Updater
module may be tied to some hardware device (such as a timer) to guarantee periodic execution behavior.

An example to illustrate the nuances of this multi-client/server interaction will be developed. First, the
object naming and constructor de�nition that is done at con�guration time will be sketched. The integration
creates object references (i.e., io1, io2, ax1, axgrp1) and then binds addresses to the created objects through
some name registration. Since ax1 and axgrp1 are periodic updating OMAC modules, they have inherited a
method update() and register with the Periodic updater updater using its register updatable()method.
The second parameter �eld in register updatable() method is the clock divisor.

integration process init()f

// initialize parameters

Periodic Updater updater;

IOpoint io1= new IOpoint("encoder1");

IOpoint io2= new IOpoint("actuator1");g

Axis ax1= Axis("Axis1", io1, io2);

AxisGroup axgrp1= AxisGroup("AxisGroup1", ax1);

updater.set timing interval(.01); // 10 millisecond period

updater.register updatable((Updatable �) axgrp, 2);

updater.register updatable((Updatable �) ax1, 1);

g

Next, a sequence of operations will highlight the connection between the Scheduling Updater (Updater),
the Axis Group module (AxGrp), the Axis module(Axis) and the actuator and encoder IO points. Within
the Axis module, references to the component classes Axis velocity servo, Axis Command Output and
Control Law module will be made. (Readers are referred to Section 4.0 to further review Axis components.)

17

In lieu of an Object Interaction Diagram, the following pseudo code tracks the sequence of operations to
set ax1 to follow velocity pro�le, send a commanded velocity, read the axis actual velocity, compute the next
acceleration setpoint using a Control Law and then output a commanded acceleration to the IO. Indentation
indicate levels of descent in the calling stack.

updater!axgrp1!update()

axgrp1!ax1!following velocity()

ax1!Axis velocity servo!start velocity following()

axgrp1!set commanded velocity(commandedvelocity)

updater!ax1!update()

ax1!processServoLoop()

Axis velocity servo!velocity update action()

Axis velocity servo!Axis Command Output!get velocity command()

Axis velocity servo!Axis Sensed state!get actual velocity()

io1!get();

Axis velocity servo!ControlLaw!(load parameters)

Axis velocity servo!ControlLaw!calc control cmd

Axis velocity servo!ControlLaw!(get results)

Axis velocity servo!Axis Command Output!set acceleration command()

Axis velocity servo!Axis Command Output!update()

io2!put(outputvalue);

As seen, the Axis module ax1 method processServoLoop performs the basic inputs, computes and
outputs expected of a cyclical process. This functionality includes state interpretation so that an Axis
module typically has a reference to an Axis FSM. Within the Axis FSM, the calls to Axis velocity servo

are made. For ax1, the method update() is a wrapper that calls processServoLoop.
One assumption among the object interaction is that a state transition, such as follow velocity, is

permissible. If not, either the method invocation is ignored or an exception is thrown.

3.4 Proxy Agent Technology

Client/server interaction can be local or distributed. In local interaction, the client uses a class de�nition to
declare an object. When a client accesses data or invokes object methods, interaction is via a direct function
call to the corresponding server class member. At its simplest, local interaction can be achieved with the
server implemented as a class object �le or library. Interaction is connected by binding the client object to
a newly created server object implementation. Such a binding could be done by static linking, or with a
dynamically linked library (DLL) or through a register and bind process that does not use the linker symbol
table.

When distributed service is needed a proxy agent is used which is a set of objects that are used to allow
the crossing of address-space or communication domain boundaries[M.S86]. The class describing a proxy
agent uses the API of some other class (for which it is a proxy) but provides a transparent mechanism that
implements that API while crossing a domain boundary. The proxy agent could use any number of lower
level communication mechanisms including a network, shared memory, message queues, or serial lines.

Below is a code example to illustrate the concept of proxy agents. We will assume that we have de�ned
an axis module by the class Axis that has but one method set x();. The following code would be found in
the axis module header �le (or API speci�cation):

class Axis : Environment

f

public:

void set x();

18

private:

double myX;

g

As a user, one would develop code to connect or bind to the axis module server, which in this case has the
name \Axis1." The bind service is similar to a constructor method, but returns a server reference pointer
and keeps track of the number of client pointer references to the server. The bind establishes a client/server
relationship with the axis module. The application code is the client, and when Axis methods are invoked,
a message is sent to the server. In the following code, the application sets the x variable to 10.0:

application()f

Axis � a1;

a1 = Axis:: bind("Axis1");

a1!set x(10.0);

g

If the server is colocated with the application, it is trivial to implement the object server. The Axis::set x

implements the value store.

Axis::set x(double x)f myX = x; g

However, for distributed communication, Axis::set x is de�ned twice - once on the client side and once
on the server side. On the client side we set up the remote communication, which in this case, is a sketch of
a remote procedure call.

Axis::set x(double x)f

callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)

g

On the server side, a server waits for service events (such as the bind, and the set x method). A
corresponding Axis::set x is de�ned to handle the x variable store. The server technology could handle
events in the background or use explicit event handling. In either case, the server actions are transparent to
the client.

Axis::set x(double x)f myX = x; g

server()f

/� register rpc server name �/

while(1) f /� service events �/ g

g

Given the proxy agent fundamentals, the next step is to adapt this to FSM control. Below is a code
sketch of an Axis class that de�nes two methods process servo loop and home. An important aspect of
the Axis implementation is to make the proxy agent transparent. To be transparent, a class must de�ne
methods that support local or remote method invocation identically. In order to achieve this, an FSM class
is de�ned and when the home method is invoked, it inserts a HOME EVENT event into the Axis FSM. The
FSM has an internal queue for handling events. The FSM may spawn a separate thread of control for event
handling.

class Axis

f

FSM AxisFSM;

19

process servo loop() f AxisFSM.handle event(PROCESS SERVO LOOP EVENT); g

home() f AxisFSM.handle event(HOME EVENT); g

g;

class FSM f

msg queue evq;

int cur state;

handle event(EV num)

f

evq.send(EV NO);

g

FSM thread() // optional thread, this could be done in handle event

f

evq.receive(&ev no);

call action(ev no, cur state);

g

home update action() f /� enable homing control plan unit �/ g

process servo loop action() f /� evaluate state �/ g

g;

Within OMAC API, in order to achieve transparency across implementations, all methods contain a
parameter �eld to allow customization of the infrastructure by de�ning an environment variable at the end
of the parameter list. This is an implicit augmentation performed by an IDL compiler. For any OMAC API
calling parameter list, the ENVIRONMENT parameter appears at the end of the calling sequence, as in:

void move(double x, double y, double z, ENVIRONMENT env = default);

The ENVIRONMENT can be used in several ways to tailor the infrastructure, such as to specify the remote
communication protocol and the necessary parameters during transmission. The ENVIRONMENT can also be
used to set an invocation time-out value or to pass security information. The ENVIRONMENT can be a stubbed
dummy and ignored by the called method.

The goal of the ENVIRONMENT parameter is to provide transparency between invoking function calls
locally or invoking function calls remotely. To provide for transparency between local and remote calls,
the ENVIRONMENT parameter �eld has a default argument initializer so that local (or remote) calls need not
supply this parameter.

The actual infrastructure supported by the ENVIRONMENT parameter will not be speci�ed within this
OMACAPI document. Systems with a proprietary remote communication technology may use the ENVIRONMENT
parameter �eld to enable distributed processing. The ENVIRONMENT can also be used as a trap door to hide
other nonstandard operations. To enable compatibility with known remote processing requirements, OMAC
API uses accessor functions to manipulate object data members. The data format creates one or two acces-
sor functions { one to set and one to get { as de�ned by the cases for read only, write only, or read-write
combinations.

void set x(double inx, ENVIRONMENT env=default);

double get x(ENVIRONMENT env=default);

20

Note that the ENVIRONMENT parameter at the end of the parameter list is necessary.

3.5 Infrastructure

The infrastructure deals primarily with the computing environment including platform services, operating
system, and programming tools. Platform services include such items as timers, interrupt handlers, and
inter-process communications. The operating system (OS) includes the collection of software and hardware
services that control the execution of computer programs and provide such services as resource allocation,
job control, device input/output, and �le management. Real Time Operating System Extensions can be
considered platform services since these extensions are required for semaphoring, and pre-emptive priority
scheduling, as well as local, distributed, and networked interprocess communication. Programming tools
include compilers, linkers, and debuggers.

The OMAC API does not specify an infrastructure because many of the infrastructure issues are outside
the controller domain and would be better handled by the domain experts. Further, it is more cost-e�ective
to leverage industry e�orts rather than to reinvent these technologies. For example, commercial implemen-
tations of proxy agent technology are available. Microsoft has developed and released DCOM (Distributed
Common Object Model) for Windows 95 and Windows NT. Many implementations of CORBA (Common
Object Request Broker Architecture) are available and Netscape incorporates an Internet Interoperable ORB
Protocol (IIOP) inside its browser. The question concerning the hard-real-time capability of such products
remains. But, industry is acting to solve this problem. In the interim, control standards that could provide
a real-time infrastructure are available [OSA96].

Because there are so many competing infrastructure technologies, OMAC API has chosen to allow the
market to decide the course of the infrastructure de�nition. As such, to achieve plug-and-play module
interchangeability, a commitment to a Platform + Operating System + Compiler + Loader + Infrastructure
suite is necessary for it to be possible to swap object modules.

3.6 Behavior Model

For the OMAC API, behavior in the controller is embodied by �nite state machines (FSM). OMAC API uses
state terminology from IEC1131[IEC93]. An FSM step represents a situation in which the behavior, with
respect to inputs and outputs, follows a set of rules de�ned by the associated actions of the step. A step
is either active or inactive. Action is a step a user takes to complete a task which may invoke one or more
functions, but need not invoke any. A transition represents the condition whereby control passes from one or
more steps preceding the transition to one or more successor steps. Zero or more actions shall be associated
with each step.

3.6.1 Levels of Finite State Machines

For an OMAC API module, there can be nesting of a FSMs. OMAC API does not dictate the levels
of FSM. In general, an outer \administrative" FSM exists to handle activities that include initialization,
startup, shutdown, and, if relevant, power enabling. The administrative FSM must follow established safety
standards. When the administrative FSM is in the READY state, it is possible to descend into a lower level
FSM. OMAC API de�nes the OMAC Base Class module to provide a uniform administrative state model
across modules. The OMAC Base Class state model is illustrated in Figure 10. The administrative state
model describes the start-up, shutdown, enabled/ready, con�gured, aborted, and initialization operations
that form the baseline of a module state space. States have methods (e.g., init(), startup() to cause state
transitions.

To enter into a lower FSM, the module enters into the \executing" state as shown Figure 10. In the
\executing" state, client/server coordination uses a lower FSM for coordination. This lower FSM is module
and application dependent. This lower FSM in turn can have a FSM embedded within it and further nesting
of embedded FSM is possible.

Figure 11 shows the nesting of FSM levels. The nesting of one or more lower level operation FSM is
possible depending on system complexity. Within the nesting of FSM shown in Figure 11, one may have

21

RESET

INIT

DISABLED

EXCEPTION

EXECUTING

init()

startup() (second pass)

enable()

“command”()

resetException()

CONFIGURING configure

 configured

resolve_abort()

ABORTEDSTOPPING

shutdown()

reset()

DOWN

ENABLED/
READY

disable()

throw_excepetion()

abort()stop()(done)

(powerup)

Figure 10: Generalized State Diagram

an \operational" FSM to handle di�erent NC modes corresponding to \auto", \manual", or \MDI". For
example, at the operation level for part programming, there may be another level of FSM to handle a family
of parts. When a particular part is speci�ed, it may invoke a nested FSM that speci�es processing to be
performed speci�c to that part. The designer of a particular control system determines the number of nested
FSM levels, depending upon the complexity and organization of the controlled system. At the lowest level
FSM is a dominion FSM that is the current focus of control.

The levels of FSM �t within OMAC API computational paradigm. Figure 12 shows the OMAC API
module general computational paradigm. Within the OMAC API general computational paradigm, an
OMAC API module contains a queue, possibly of length 1, for queuing commands. Commands are in the
form of FSM. The OMAC API module may have one or more FSM executing on a dominion FSM list. The
dominion FSM list contains FSM that \rule" over other objects. In the diagram, the FSM are represented
by a rectangle within a diamond. The dotted line indicates an optional FSM.

Administration
FSM

Operation
FSM

Dominion FSM
busy, idle

reset, init, enabled

auto, manual

execute(), suspend(), resume(), stop(), ...

ready, executing

execute(), suspend(), resume(), stop(), ...

paused, running

execute(), suspend(), resume(), stop(), ...

METHODS

METHODS

METHODS

...

Figure 11: Levels of FSM

22

ADMINISTRATION

MODULE COMMAND = FSM

...

FSM STATE

COMMAND
QUEUE

FSM STATE

FSM FSM ...

FSM

DOMINION

FSM

NESTING

Figure 12: Module Computational Paradigm

With this FSM paradigm, di�erent OMAC API modules have di�erent command queue and FSM do-
minion list sizes. The Task Coordinator has a one-element queue as well as a one-element dominion FSM.
The Discrete Logic module may have a one element queue, but generally has a multi-item dominion FSM
list, some active, some not active, to coordinate the IO points. The Axis Group has a minimum two-element
command queue, and generally a one-element dominion FSM list unless some blending of operations or syn-
chronization with a spindle FSM is required. The Axis module has an one FSM derived from the OMAC
Base Class, but has no command queue. These di�erences will be further explored.

3.6.2 Control Plan Units

For OMAC API, the FSM is the principal element of both the data
ow and control
ow. When the FSM
is passed between modules it is called a ControlPlanUnit. ControlPlanUnits are passed from the sending
OMAC API module to the receiving OMAC API module to e�ect behavior. ControlPlanUnits are then
used within a module to handle the control
ow. A module executes an ControlPlanUnit until it ends or is
superceded by another ControlPlanUnit. How the ControlPlanUnits are implemented is not important to
the OMAC API. The following is a sketch of the ControlPlanUnit API.

interface ControlPlanUnit

f // approximate a graph structure

ControlPlanUnit execute unit(); // return next ControlPlanUnit

void set active(); // set when "executing"

void set inactive();

boolean isActive(); // for HMI to determine when active

// ... methods for persistence data in binary or neutral format

// ... methods for graph representation for navigation purposes

g

The CPU is the base class, but the OMAC API de�nes several specializations. For instance, the HMI
ControlPlanUnits for the Task Coordinator called Capabilities. A ControlPlanGenerator, such as one for
RS247D or IEC1131, also generate Control Plans for the Task Coordinator, or possibly Control Plans that
by-pass a Task Coordinator if one doesn't exist in the architecture. When the TaskCoordinator accepts a
ControlPlanUnit from ControlPlanGenerator, the CPU may contain an embedded CPU so that the embedded
CPU are then sent to AxisGroup modules or DiscreteLogic modules. The AxisGroup and the DiscreteLogic
modules accept a CPU specialization. Figure 13 illustrates the ControlPlanUnits hierarchy of possible

23

Control Plan
Unit

Capability
Motion

Segment
Discrete

Logic Unit
Program

Logic

Auto Manual Joystick Line Arc Nurb if then endif

...

whileMist Coolant Tool

...

Figure 13: Control Plan Hierarchy

ControlPlanUnit specializations. It is through CPU specialization that adding capabilities (such as a
NURB MotionSegment) is possible. Specialization of CPU include:

Capabilities corresponds to di�erent machine modes (manual, auto). When the Capability FSM is in the
READY state, the Capability can descend into a lower FSM or ControlPlanUnit. For example, once in
the auto Capability FSM, a lower level FSM for the \cycle" ControlPlanUnit can be used to sequence
through a series of ControlPlanUnits.

MotionSegments corresponds to the FSM input for an Axis Group module. In addition to the FSM
command and parameter methods, a MotionSegment includes such information as rate, geometry, and
a reference to a velocity pro�le generator that are necessary for trajectory planning.

DiscreteLogicUnits corresponds to the FSM input for an Discrete Logic module. DiscreteLogicUnits
coordinate and control an aggregation of IO points. In addition to the FSM command and parameter
methods, a DiscreteLogicUnit contains the information necessary for de�ning asynchronous logic, the
event or condition trigger or for de�ning synchronous logic, the scan rate and FSM.

ProgramLogic CPU for decision making. (e.g., loops, end program and if/then/else).

A ControlPlanUnit is responsible for its own branching. For this reason, the method execute unit()

return a reference to the next ControlPlanUnit. A ControlPlanUnitmay embed other ControlPlanUnits.
A series of ControlPlanUnit(s) is a ControlPlan. A ControlPlan can be a simple list to represent
sequential behavior or a complex tree to represent parallel controller behavior. Traversal methods are de�ned
within a ControlPlanUnit so that external modules, such as the HMI, can monitor progress of ControlPlan via
the isActive() method. Figure 14 illustrates some possible connections of ControlPlanUnits. Through the
use of ProgramLogic CPU, one can achieve a mapping from most computer programming control constructs
into a list representation.

The ControlPlanUnit can contain other ControlPlanUnits. When activated, a CPU can send another
CPU to the lower level server. Thus, CPU can be \intelligent" and understand how to coordinate and
sequence the lower level logic and motion modules. Consider the following examples. The ControlPlanUnit
could put MotionSegments on the AxisGroup motion queue. The ControlPlanUnit FSM can either put
LogicUnits on the DiscreteLogic queue or activate LogicUnits on the DiscreteLogic dominion list similar
to a PLC scanning list. Figure 15 illustrates the propagation of CPU through a controller.

To use such a sequence of control, the Control Plan Generator builds a ControlPlanUnit for the Task
Coordinator FSM that causes a MotionSegment FSM to be pushed onto AxisGroup Queue. It is important
to understand that this rippling e�ect is a fundamental mechanism for passing data through an OMAC API
controller.

24

whileifA=B

Control
 Plan Unit

Control
 Plan Unit

Control
 Plan Unit

Control
 Plan Unit

Control
 Plan Unit

Control
 Plan Unit

Control
 Plan Unit

Control
 Plan Unit

then

else

endif

StepA

Control
 Plan Unit

Control
 Plan Unit

Control
 Plan Unit

stepB StepC

Figure 14: Control Plan

Control Plan Generator
(RS274D Part Program

Translator)

Control Plan Generator
(IEC 1131-3 Translator)

Control Plan Generator
(IEC 1131-3 Translator)

‘
Task Coordinator

‘
Axis Group ‘

Discrete Logic

Axis

Capability
Control Plan Unit

Control Plan Unit

Control Plan Unit

Control Plan Unit

Control Plan Unit

Methods

Methods

(Motion Segmenta
Discrete Logic Unitb)

(Motion Segmenta)

(Discrete Logic Unitb)

Figure 15: Intelligent CPU Spawning Lower Level CPU

As an example, the application of proxy agent technology will be used by Control Plan Generator to
generate a ControlPlanUnit for an axis homing FSM. The axis homing is an FSM with a transition
method execute and a query method isDone to determine FSM completion.

hmi!taskcoord!set current capability(auto);

taskcoord!auto!start(); //enable this capability

hmi!ControlPlanGen!set program name("prog1");

hmi!auto!cycle(); //start process

taskcoord!update();

auto!execute unit();

cpu=auto!cpg!translate();

cpu!execute unit();

cpu!ag!set next motion segment(ms1);

cpu!dl!start(dl toolprep);

25

ag!update();

// read current axes position, overrides, compute fwd kinematics...

ag!ms1!calc next increment(actual pos, overrides);

// compute inv kinematics, write axes commanded position

dl!update();

// scan fsm list (scanning list mechanism hidden from API)

for(i=0;i<n;i++) dl!scanlist!cpu[i]!execute unit)();

taskcoord!update();

auto!execute unit();

if(cpu!ag!isDone()) cpu!ag!set next motion segment(ms2);

auto!cpu!execute unit();

auto!cpu!ag!isOK();

auto!cpu!dl!isOK();

The OMAC API speci�es that ControlPlanUnit objects can embed module references and direct method
calls. On the surface this approach appears implausible. However, because of proxy agent technology,
creating a \forward reference" by dynamically binding to an object is not hard to do. This dynamic binding
is bene�cial since it eliminates the need for static encoding of methods with id numbers so that methods can
execute across domains (address spaces). To enable forward references, the requirement does exist for the
infrastructure to support some \lookup()" method to map object names to addresses.

interface axis homing : ControlPlanUnit

f

attribute MotionSegment ms homing; // parameters set by the CPG

execute() // called by Task Coordinator

f

if(firsttime)

ag!set next motion segment(ms homing); // message passing!

else if(!ag!isOK()); // do error checking each cycle

g

isDone()f return(!ag!isHomed()); g // called by Task Coordinator

set axgrp(char � axgroupname) f ag=lookup(axgroupname); g

private:

Axis Group �ag; // ag set by the CPG

g

The execute and isDone methods use explicit calls to an Axis Group object. A \forward reference" to
the Axis Group object is required. Suppose the Control Plan Generator (CPG) receives at constructor time
the name \axisgroup1" for the Axis Group object. Lookup of the \axisgroup1" must be available through
the underlying proxy agent technology. Without the proxy agent technology, one has to encode the object
ag and the methods ag->home and ag->isDone. This extra programming overhead is hidden by the proxy
agent technology.

3.6.3 Task Coordinator

The Task Coordinator module accepts a ControlPlanUnit called a Capability.

The Task Coordinator has a one-element FSM dominion list. The dominion FSM list is de�ned by the
Capability class de�nition. Associated with the Capability FSM is a ControlPlan list.

26

TASK

Home
Capability

AxisGroup

Jog
Capability

Tool Change
Capability

Auto
Capability

Part Program
 Translator

CAPABILITIES
LIST

Pointer to one of these capabilities established at configuration/construction time.

Finite State
Machine Module

LEGEND

Discrete

List Pointer Reference
Pointer

COORDINATOR

 Logic

Capability Control
Plan Unit

Control
Plan Unit

MODULE

...

Figure 16: Controller Task Coordinator Capabilities

The Capability FSM supports stop, start, execute, isDone methods. For an application con-
troller, there is list of capabilities that a Task Coordinator can use. Figure 16 illustrates a typical milling
CNC application with Capability instances. Each Capability has reference pointers to OMAC API mod-
ules that it uses. Thus, the Home Capability and the Jog Capability each have reference pointers to the
Axis Group. When a Capability is executing, it coordinates the servicing of requests from the HMI. When
the Auto Capability FSM is executing, it interacts with the Control Plan Generator.

FSM

CAPABILITY
start
execute

DEFAULT

stop - removes from list

HMI loads its capability into Task Coordinator, if Task Coordinator not already busy‘
If already busy, Task Coordinator either ignores request or asks current capability
to stop.

MANUAL stop()

AUTO start()

AUTO execute()

AUTO execute to start translating part program
and then control plan munching

load program

OPERATOR

push auto

push cycle

FSM

Figure 17: Step Through of a Task Coordinator Capability Sequence

Figure 17 illustrates a sequence of operations that takes a milling CNC from manual mode to automatic
mode. The diagram illustrates that a Capability FSM has start, stop, execute methods. There is the
assumption that there is a default Capability, probably an Idle Capability. In the scenario, the operator
pushes the auto button that causes the HMI to execute the Manual Capability stop method, and load
the Auto Capability onto the Task Coordinator queue. That cycle, the Task Coordinator will see that the
Manual Capability boolean isDone is True and will swap the Auto Capability FSM into the dominion
FSM list. The operator action to load a program will result in a program name loaded into the Control Plan
Generator. When the operator pushes the cycle button, it will cause the Auto Capability FSM to start
sequencing Control Plan Generator generated information. Control Plan Generator information is called
ControlPlan and will covered in the next section.

27

IO

IOIO
MIST
ON

LR IO IO IO

SOFTWARE

HARDWARE

notify subscriber of IO change

FSM
in IEC1131

IO
Scanner

Mist On
Ladder Rung

FSM
Mist Rung

DISCRETE
LOGIC

Figure 18: Discrete Logic FSM List

3.6.4 Discrete Logic

The Discrete Logic module is similar to the Task Coordinator module in that it sequences and coordinates
actions through dominion FSM. However, for clarity, instead of a monolithic one-element dominion FSM,
the Discrete Logic module has a multi-item dominion FSM list. In general, a Discrete Logic dominion FSM
could be coded in any of IEC-1131 languages. Figure 18 illustrates the types of FSM that may be found
on the Discrete Logic dominion list for a typical milling CNC application. An FSM to handle IO scanning
would be expected. An FSM implemented as a Ladder Rung could be expected to handle a relay for turning
a Mist pump on. Below one �nds a sketch of the activity for turning the IO mist pump on.

mist pump on rung()

execute()

f logic: trigger relay to turn pump on

wait till IO/pt says pump is on

IOmist on;

g

At a higher level, a hardware-independent Mist FSM would be required to coordinate turning Mist on
and o�. Below is a sketch of pseudo code to sequence the Mist on operation. For coordination between FSM
logic, polling or event-drive alternatives exist to wait for the IO Mist on activity to complete.

mist on fsm()

f "MistOn LR IO <- on" to turn LR=ladder rung on

"subscribe to event that IO Mist On ==on"

"wait for event or poll for IO point for Mist On == on "

"done - deactivate FSM for scanning"

g

3.7 Foundation Classes and Data Representation

Exchange of information between modules relies on standard information representation. Such control do-
main information includes units, measures, data structures, geometry, kinematics, as well as the framework
component technology. Figure 19 portrays the conceptual organization of framework component software as
de�ned by foundation classes.

Consider the analogy of building materials. The primitive data types, shown at the bottom of Figure
19, are similar to such raw materials as sand, gravel, and clay. Using foundation classes and aggregating

28

Primitive Data Types (int,double, etc.)

Units Measures Containers
(matrix)(length)(meter)

Geometry
(coordinate frame; circle)

Kinematic structure

Control components
(pid; filters)

Axis components
(sensors, actuators)

Machine tool axis or robotic joints
(translational; rotational)

Axis groups Fixtures
Other tooling

Simple machines; tool-changers; work changers Processes

PlansMachining systems/cells; workstations

Figure 19: Software Reusable Assets

structural components, a control hierarchy of reusable software components can be built. Based upon the
reusable foundation classes, these assets can be used to build class libraries for such motion components as
sensors, actuators, and pid control laws.

Not all software objects have physical equivalents. Objects such as axis groups are only logical entities.
Axis groups hold the knowledge about the axes whose motion is to be coordinated and how that coordination
is to be performed. Services of the appropriate axis group are invoked by user-supplied plans (process
programs).

OMAC API has chosen two levels of compliance for data de�nitions. The �rst level de�nes named
data types to allow type-checking. The OMAC API uses the IDL primitive data types and builds on
these data types to develop the foundation classes and framework components. For control domain data
modeling, the OMACAPI used data representations found in STEP Part Models for geometry and kinematics
[Inta, Intb]. Internally, one could, of course, use any desired representation. The STEP data representations
were translated from Express into IDL. Representation units are assumed to be in International System of
Units, universally abbreviated SI. Below is the basic set of data types which use STEP terminology for data
names but reference other terms for clari�cation.

Primitive Data

� IDL data types include constants, basic data types (
oat, double, unsigned long, short, char,
boolean, octet, any), constructed types (struct, union and enum), arrays and template types
bounded or unbounded sequence and string.

� IEC 1131 types - 64 bit numbers

� bounded string

Time

Length

� Plane angle

29

� Translation commonly referred to as position

� Roll Pitch Yaw (RPY) commonly referred to as orientation

� STEP notion of a Transform which is composed of a translation + rpy, also commonly referred
to as a \pose."

� Coordinate Frame which is de�ned as a Homogeneous Matrix

Dynamics

� Linear Velocity, Acceleration, Jerk

� Angular Velocity, Acceleration, Jerk

� Force

� Mass

� Moment

� Moment of Inertia

� Voltage, Current, Resistance

The second level provides for more data semantics. The OMAC API adopted the following strategy to
handle data typing, measurement units, and permissible value ranges. Distinct data representations were
de�ned for speci�c data types. For example, the following types were de�ned in IDL to handle linear velocity.

// Information Model - for illustrative purposes

typedef Magnitude double;

// Declaration

interface LinearVelocity : Units f

Magnitude value; // should this value be used?

// Upperbound and Lowerbound, both zero ignore

Magnitude ub, lb; // which may be ignored

disabled();

enabled();

g;

// Application

LinearVelocity vel;

In this case, linear velocity is a special class. Unit representation is inherited from a general units model.
Permissible values are de�ned as a range from lowerbound to upperbound. The units and range information
are optional and may not be used by the application.

Another data typing problem that must be resolved concerns the use of a parameter. Not all parameters
are required or need be set by every algorithm. For example, setting the jerk limit may not be necessary for
many control algorithms. To resolve the parametric dependency issue it was decided to use a special value
to
ag a parameter as \not-in-use". This approach seems simpler than having a use xxx type method for
each parameter. For now, OMAC API has decided that setting a parameter to a unrealistic \Not in use
Number" (but not actually \Not a Number") value - such as MAXDOUBLE or 1.79769313486231570e+308 -
renders a double parameter to be ignored or not-in-use. A similar number would be required for an integer.
This works for level 1 and level 2. Within level 2, the methods enable and disable were added to explicitly
indicate use of a parameter.

30

CONTROLLER

HMI MIRROR

TC

Logic

Task Coordination

Axis

HMI
Task Coordination

HMI LogicHMI AXIS

Figure 20: Human Machine Interface Mirrors Controller

3.8 Human Machine Interface

The primary HMI objective of the OMAC API is to provide the ability to \bolt-on" a Human Machine
Interface to the controller. The HMI is intended to be independent of the choice of presentation medium,
the dialogue mechanism, the operating system, or the programming language.

OMAC API speci�es that every controller object has a corresponding HMI object \mirror". A simplifying
assumption is that HMI objects communicate to control objects via proxy agents. Figure 20 illustrates the
mirroring of a one axis controller that uses a task coordination module for coordination and sequencing in
conjunction with a discrete logic module.

The desired HMI functionality is best understood in the context of simple problems. Three \canonical"
problems exist that an HMI module must be able to handle regardless of the interface device. First, the user
must be able to receive solicited information reports about the state of the controller, such as a current axes
position. Second, the user must have command capabilities such as set manual mode, select axis, and then
jog an axis. Third, the user must be alerted when an exception arises, in other words, handle unsolicited
information reports. Following is an analysis of how the HMI mirror handles these cases.

To handle the information report functionality, an HMI mirror acts as a remote data base that replicates
the state and functionality of the controller object and then adds di�erent presentation views of the object.
These HMI mirrors are not exact mirrors of the controller state, but rather contain a \snapshot" of the
controller state. Figure 21 illustrates the interaction of the HMI mirror and the control object. In the basic
scenario of interaction, the control object is the server and the HMI mirror object is the client. Each HMI
mirror uses the accessor functions of get and set to interact with the control object. You will notice that
each host controller object and corresponding HMI mirror have a proxy agent to mediate communication.

To handle command functionality, the HMI mirror contains the same methods as the controller object
so that a command is issued by invoking a method remotely.

To handle abnormal events when polled monitoring may not be possible, an HMI mirror must serve as
a client to the control object so that it can post alert events. For such unsolicited information reports, the
control object uses an event noti�cation function, update current view, in which to notify the HMI mirror
that an event has occurred. This noti�cation in turn may be propagated to a higher-authority object.

31

HMI MIRROR
RT OBJECT

CLIENT OBJECT

present_view()

= proxy agent

get,set, methods

handle_event - alerts, errors, exception

Figure 21: Human Machine Interface

The following HMI de�nition gives the method extensions that a control object must support to become
a mirrored object.

interface HMI

f

// Presentation Methods

void present error view();

void present operational view();

void present setup view();

void present maintenance view();

// Events - to alert HMI that something has happened

void update current view();

g;

A bene�t to using the HMI mirrors is the potential for vendors to supply a control object, as well as
a presentation HMI object that can be incorporated into their Operator Interface. As an example of this
technology, a tuning package can provide a Windows-based GUI to do some knob turning. Another example,
is a tuning package that o�ers this capability to be plugged inside a Web browser. With this development,
unlimited component-based opportunities are available.

4 API

Technical Note: These API are for review and comment only. There is no guarantee of correctness. This
speci�cation approximates the intended direction of the �nal API.

4.1 Disclaimer

This software was produced in part by agencies of the U.S. government, and by statute is not subject to
copyright in the United States. Recipients of this software assume all responsibility associated with its
operation, modi�cation, maintenance, and subsequent redistribution.

32

As of April 30, 1997 the IDL De�nitions are in state of transition. Some \pure" IDL some hybrid.
Eventually there will be no attributes, only get and set methods on these attributes, since IDL does not
produce a get/set pre�x to the methods. This will not work for non-CORBA-like systems.

4.2 Basic Types

1 // All class de�nitions should register with central name/type server

2 interface OMAC CLASS

3 f

4 attribute char � name;

5 attribute char � type;

6

7 g;

8

9 interface OMAC MODULE

10 f

11 // Administrative State Transition Methods

12 void estop();

13 void reset();

14 void init();

15 void startup();

16 void enable();

17 void disable();

18 void execute();

19 void shutdown();

20

21 void throw exception();

22 void resolve exception();

23

24 > void stop();

25 > void abort();

26

27

28 boolean isReset();

29 boolean isInited();

30 boolean isEnabled();

31 boolean isDisabled();

32 boolean isReady();

33 boolean isEstopped();

34 > boolean isException();

35

36 g;

37

38 // Level 1 - these will be backed out from the other API de�nitions

39 //

40 typedef long API;

41 typedef double AngularVelocity;

42 typedef Boolean boolean;

33

43 typedef Translation CartesianPoint;

44 interface CoordinateFrame f /� FIXME �/ g ;

45 typedef double Force;

46 typedef double Length;

47 typedef double LinearVelocity;

48 typedef double LinearAcceleration;

49 typedef double LinearJerk;

50 typedef double LinearStiffness;

51 interface LowerKinematicModel f/� FIXME �/ g ;

52 interface MaintHistory f /�FIXME�/ g;

53 typedef double Magnatude;

54 typedef double Mass;

55 typedef double Measure;

56 enum MOT OBJ f SPEED, ACCURACYg;

57 typedef double PlaneAngle;

58 interface RESOURCE f/�FIXME�/ g ;

59 interface RPY f/�FIXME�/ g ;

60 interface RWCollectablef/�Something equivalent to RogueWave �/g;

61 typedef RWOrderedf/�Something equivalent to RogueWave �/g;

62 interface Time f /� FIXME �/ g;

63 interface Translation f/�FIXME�/ g ;

64 interface UNITS f/�FIXME�/ g ;

65 interface UpperKinematicModel f/�FIXME�/ g ;

66

67

68 //?? Or you can assume numbers are
agged not active at

69 //?? construction time.

70 // Below most control parameters would be typed as double

71 #define double not active 1.79769313486231570e+308

72 #define long not active 0x80000000

73 #define short not active 0x8000

74

75

76 // Level 2 Example - not de�ned here

77

78 interface LinearVelocity : Units f

79 Magnitude value; // should this value be used?

80 // Upperbound and Lowerbound, both zero ignore

81 Magnitude ub, lb; // which may be ignored

82 disabled();

83 enabled();

84 g;

85 interface Unitsf /� FIXME �/ g;

86

87

34

4.3 Control Plan

1 interface ControlPlanUnit

2 f // approximate a graph structure

3 ControlPlanUnit execute unit(); // return next ControlPlanUnit

4 // ControlPlanUnit get next unit();

5

6 void set active(); // set when "executing"

7 void set inactive();

8 boolean isActive(); // for HMI to determine when active

9

10 // persistence data a la binary image

11 void save(char � file);

12 void restore(char � file);

13

14 // persistence data in neutral format (pre-con�guration)

15 void save neutral(char � file);

16 void restore neutral(char � file);

17

18 // The graph is used for non-execution navigatation

19 ControlPlanUnit � cpu[100 /�max�/];

20 attribute int length; // number of arcs in this graph node

21 attribute int max; // max number of arc possible should grow dynamically

22 // FIXME: add traversal functions here

23 g;

24

25 interface ControlPlan : RWList<ControlPlanUnit> fg;

4.4 Scheduling Updater

1

2 interface updatable

3 f

4 attribute double period;

5 void update()=0;

6]

7

8 interface asych updater

9 f

10 register updatable(updatable upd);

11 virtual void update();

12

13 g

14

15 interface periodic update : asynch update

16 f

17 get timing interval();

18 virtual void update();

35

19

20 g

21

4.5 IO

1 // Level 1

2 interface IO PT<T> // <T>= int, boolean, double,
oat

3 f

4 <T> get value();

5 void set value(<T> v);

6

7 char �get name();

8 void �set name(char �name);

9

10

11 attribute (void �) (�monitor) (); // is an independent thread of execution

12

13 //?? attribute device-info; // reference to device info

14

15 //?? attribute int type; // 1=read-only, 2=read/write, 0=don't care

16 // or use IO derived type to di�erentiate types

17 //?? attribute UNITS units;

18 //?? attribute <T> upper bound;

19 //?? attribute <T> lower bound;

20 g;

21

22 interface callbackNotification

23 f

24 void execute();

25 g;

26

27 interface IOPt Notify

28 f

29 void notify handlers(); /� list management �/

30 void attach(callbackNotification cb);

31 g;

32

33 // example derived type

34 // interface IOPt No�ty on sign change: IOPt Notify f g ;

35

36 typedef sequence<int> IOvalues;

37 typedef sequence<char �> IOnames;

38 typedef sequence<char �> IOmetadata;

39

40 // Or should this just be an array of IOPts?

41 interface IOgroup

42 f

36

43 IOvalues get values();

44 void set values(IOvalues);

45

46 void add IO PT(IO PT<T> io);

47 IOnames get names();

48 IOmetadata get metadata();

49

50 g;

51

52 //??typedef sequence<IO PT<T� IO SYSTEM;

53 // A container for a list of IO Points

54 interface IOsystem

55 f

56 IOgroup get IO GROUP(char � name);

57 IOPt get IO PT(char � name);

58 g;

59

60

61 // Example

62 interface myIO : IO SYSTEM /�UPDATABLE�/

63 f

64 IO PTshort encoder1;

65 IO PTshort encoder2;

66 IO PTlong encoder3;

67

68 void update();

69 callbackNotification new sample available; /� tell clients of new data �/

70 set pacer clock(divisor); /� control �/

71 g;

72

73 // Level 2: Hierarchy of Common IO Points - for type checking

74 // See IO API Document for further details

4.6 Task Coordinator

1 // Each capablity is an FSM and types of capabilities include: manual, auto, estop, etc.

2 // FIXME: What is the relationship of manual to auto and any to estop?

3 // Internally the capbility is a FSM.

4 interface Capability

5 f

6 void start();

7 void execute();

8 void update cap(); //update() can call update cap()

9 void stop();

10 void abort();

11 void throw execption();

12 void resolve execption();

13 boolean isDone();

37

14 boolean isActive(); //+

15 g;

16

17 typedef sequence<Capability> Capabilities;

18

19 // Task Coordinator accepts one capability from a list of capabilities.

20 interface TaskCoordinator : OMAC MODULE /�UPDATABLE�/

21 f

22

23 virtual void update(); //can be inherited from UPDATER

24

25 // Capability List Management

26 void add to list(Capability � cap);

27 void remove from list(Capability � cap);

28 Capabilities get list();

29

30 // Current Capability Management

31 Capability � get current capability();

32 void set current capability(Capability � cap);

33 g;

34

4.7 Discrete Logic

1 // Discrete Logic Module contains a list of logic units. A PLC like scan

2 // goes down the list and executes each logic unit if it is on. Logic units

3 // will be executed as often as its posted scan rate indicates.

4 // Internally each discrete logic unit is an FSM.

5 // Discrete Logic Units (DLUs) are grouped by scan rates.

6 interface DiscreteLogic : OMAC MODULE

7 f

8

9 // Logic Units Management

10 DiscreteLogicUnit � create discrete logic unit();

11 void add logic unit(DiscreteLogicUnit dlu);

12 void remove logic unit(DiscreteLogicUnit dlu);

13 void enable logic unit(DiscreteLogicUnit dlu);

14 void disable logic unit(DiscreteLogicUnit dlu);

15 g;

16

17 // Derived from ControlPlanUnit, see: part program translator

18 interface DiscreteLogicUnit: ControlPlanUnit

19 f

20 attribute integer interval;

21

22 void start();

23 void scan update();

24 void stop();

38

25 boolean isOn();

26 boolean turnOn(); // external event causes invokes this method

27 boolean turnOff();

28 g;

29

4.8 Control Plan Generator

1 // Level 1 assuming simple File Manipulation

2 interface ControlPlanGenerator

3 f

4 void set program name(char � s);

5 char � get program name(char � s);

6

7 boolean checkSyntax();

8 char � get error codes(); // or returns �le name or �le pointer?

9

10 ControlPlan translate(); // complete translation into ControlPlan

11 ControlPlanUnit � get next ControlPlanUnit(); // step by step translation

12 g;

13

14 // Level 2 Production Data Management

15 interface ProductionDataManagement : FILE VERSION

16 f

17 // A standard should be completed by 9/97

18 g;

19 interface CPGLevel2

20 f

21 attribute ProductionDataManagement pdm;

22 g;

23

24 // Defer interface speci�cation to CAD

25

4.9 Axis Group

There are some inconsistencies within the Axis Group module API. The major remaining problem is to
resolve the use of the axis group velocity pro�le generator (VPG) versus having the VGP embedded within
a motion segment.

1 //+ add accel mode - use instead of enum - windows problem

2 typedef int ACC MODE;

3 #define S CURVE 1

4 #define TRAPEZOIDAL 2

5

6 interface AxisGroup : OMAC MODULE UPDATABLE

7 f
8 //+ enum f ERROR, HELD, HOLDING, STOPPED, STOPPING, PAUSED, PAUSING, RE-

SUME, EXECUTING, IDLE g;

39

9

10 // STATE LOGIC

11 // ===

12

13 void hard stop axes(); // Stop at max deceleration rate (abort)

14 void pause axes(); // stop on path

15 void hold axes(); // stop at end of segment

16 void resume axes(); // Resumes motion from current point

17

18 // void update axes();

19 void update(); //+ changed for consistent interface

20

21 int get current state();

22 String get current state name();

23 boolean is OK();

24 boolean is Executing();

25 boolean is Held();

26 boolean is Holding();

27 boolean is Paused();

28 boolean is Pausing();

29 boolean is Stopping();

30 boolean is Stopped();

31

32 // These methods could be operator Control Plan Unit

33 void jog axis(int axis no, VelocityMeasure speed);

34 void home axis(int axis no, VelocityMeasure speed);

35 void move axis to(int axis no, VelocityMeasure speed, LengthMeasure to position);

36 void increment axis(int axis no, VelocityMeasure speed, LengthMeasure increment);

37

38 // BUFFERING MANAGEMENT

39 //===

40 void set next motion segment(Motion Segment block);

41 // Motion Segment get current motion block(); //hazardous to your controller's health

42 int get MaxqSize() const; // largest queue size possible=n

43 void set qLength(int value); // maximum number of queue members=(1..n)

44 int get qLength() const;

45 int get current qSize(); // number of items in queue=i

46 boolean is Full(); // number of items = n

47 boolean is Empty(); // number or items = 0

48

49 void flush(); //
ush all segments

50 void skip(); // skip to next segment

51 void save q context(); // save current queue

52 void restore q context(); // restore saved queue

53

54 // FIXME: possibly more queue mgt functions (accessor, query, ...)

55

56 // CONVENIENCE FUNCTIONS TO ACCESS MOTION SEGMENT DATA

40

57 //===

58 length measure � get neighborhood() const;

59 LinearVelocity � get feedrate() const;

60 VelocityMeasure � get traverseRate();

61 double get feedrateOverride() const;

62 double get spindlerateOverride() const;

63 LinearJerk � get jerkLimit() const;

64 Boolean get inPosition() const;

65 void set inPosition(Boolean value); /� private method�/

66

67 // See Note 1

68 Measure get actual axis position(int axis no);

69 OacVector get actual axes positions();

70 CoordinateFrame get xformed actual positions();

71 Measure get commanded axis position(int axis no);

72 OacVector get commanded axes positions();

73 CoordinateFrame get xformed commanded positions(OacVector axis positions);

74

75 ACC MODE get accMode() const;

76

77 // KINEMATIC INFORMATION

78 //===

79 // Axis under control

80 CoordinatedAxes � get coordinatedAxes() const;

81 KinStructure � get kinStructure() const;

82 void set kinStructure(KinStructure � value);

83 ToolPartTransforms � get toolTransform() const;

84 CoordinateFrame � get baseFrame();

85 void set baseFrame(CoordinateFrame � value);

86

87 // recovery from fault error, sharing

88 void inhibit axis(int axis no, boolean inhibit);

89 boolean axis inhibitd(int axis no);

90 void inhibit spindle(boolean inhibit);

91 boolean spindle inhibitd();

92

93 // TRAJECTORY INFORMATION

94 //===

95 void set blending(boolean flag); // TRUE=ON, FALSE=OFF

96 void set single step(boolean flag); // TRUE=ON, FALSE=OFF

97

98 // void set VPG(VelocityPro�leGenerator vpg);

99 // VelocityPro�leGenerator get VPG();

100

101 // Timing is now a reference to another object

102 // time measure get axisUpdateInterval() const;

103 // void set axisUpdateInterval(time measure value);

104 attribute Timing timing;

41

105

106 void set physical limits(Rate � limits); //+ 3-Jun-1997

107 Rate � get physical limits(); //+

108 g;

109

110 // NOTES

111 // 1. There is a problem in JAVA with returning data type.

112 // Storing into calling parameter as a side e�ect Side

113 // instead of

114 // OacVector get commanded axes positions();

115 // use

116 // void get commanded axes positions(OacVector positions);

117 // It is possible to redo above in this signature style.

118 // 2. Issue: There are issues as to maximum acceleration of device

119 // versus Control Plan Unit (Motion Segment)

120

121 // Control Plan Class De�nitions- Motion Segments

122 #if 0

123 interface CoordinatedAxes

124 f

125 // Fixme

126 g;

127

128 interface OacVecetor

129 f

130 // how does this di�er from PathNode

131 g;

132

133 interface PathNode

134 f

135 transform get controltransform();

136 void set controltransform(transform value);

137 g;

138 interface PathElement : public KinematicPath

139 f

140 virtual void initAccDecProfile(LinearVelocity �vel);

141 void set start point(PathNode start point); // axgroup sets

142 PathNode get start point();

143 PathNode get end point(); // axgroup sets

144 // void set end point(PathNode end point); // ppt or internal use

145 virtual LengthMeasure get distance to go();

146 boolean isPathComplete();

147 virtual LengthMeasure pathLength();

148 // virtual LengthMeasure pathLength(XYZ xyz); // what is this

149 g;

150 #endif

151 interface Rate

152 f

42

153 void set nominal feedrate(double vnom);

154 int set current feedrate(double vmax); // includes override

155 int set maximum acceleration(double amax);

156 int set maximum jerk(double jmax);

157

158 double get nominal feedrate();

159 double get current feedrate(); // includes override

160 double get maximum acceleration();

161 double get maximum jerk();

162

163 double get current velocity();

164 void set current velocity(double vcur);

165

166 double get final velocity();

167 void set final velocity(double vcur);

168

169 double get current acceleration();

170 void set current acceleration(double acur);

171

172 int get acc state();

173 void set acc state(int val);

174 int isDone();

175 int isAccel();

176 int isConst();

177 int isDecel();

178

179 void set nominal spindle speed(double spd); // why here?

180 double get nominal spindle speed();

181 g;

182 interface KinematicInfo

183 f

184 void setToolCenter(LengthMeasure& effectiveDisplacement,

185 CRCMODE cutterRadiusCompensation);

186

187 Xform get current frame();

188 void set current frame(Xform current frame);

189

190 KinematicsModule get kinematics();

191 set kinematics(KinematicsModule kin);

192 g;

193

194 interface VelocityProfileGenerator

195 f

196 AccDecProfile � get accDecProfile();

197 void set accDecProfile(AccDecProfile � value);

198

199 void set blending point distance(double distance);

200 double get blending point distance();

43

201

202 time measure � get sampling time();

203 void set sampling time(time measure � value);

204 /� New 3-Jun-1997 �/

205 void hold segment();

206 void pause segment();

207 void resume segment();

208 g;

209 // Base Class for Motion Segment

210 // Derived from ControlPlanUnit - see part program translator

211 interface Motion Segment : ControlPlanUnit

212 f

213 attribute KinematicInfo kin;

214

215 void set vpg(VelocityProfileGenerator � vpg);

216 VelocityProfileGenerator � get vpg();

217

218 void set translational rate(Rate � rate);

219 Rate � get translational rate();

220

221 void set orientation rate(Rate � rate);

222 Rate � get orientation rate();

223

224 void set angular rate(Rate � rate); // does this belong in axis group?

225 Rate � get angular rate();

226

227 // if internal velocity pro�le generation supply this interface

228 void set blending point distance(double distance);

229 double get blending point distance();

230

231 LengthMeasure calc distance remaining(); // axes

232

233 void OacVector get incremental distance();

234 OacVector get lengths remaining(); // per axis

235 OacVector calc next increment(double feed override,

236 double spindle override,

237 //? doesn't this need in current position

238 double[] increment = NULL /� ignore side e�ect �/

239);

240 boolean start next segment(); //? what does this mean init?

241 //? int init(double cycle time); //+ 3-Jun-1997

242 void pause segment();

243 void hold segment(); /� new �/

244 void stop segment(); /� new 3-Jun-1997 set motion to done �/

245 void resume segment();

246 boolean is paused();

247 boolean is held();

248

44

249 // Program information (�le, line number, block) and signals(active)

250 void set ppb(PartProgramBlock ppb);

251 void segment started();

252 void segment finished();

253 g;

254 //NOTES:

255 // 1. Handling Termination Condition:

256 // a. Exact Stop = blending distance=0

257

258 #endif

259

4.10 Axis

1 interface Axis;

2 interface Axis Absolute Pos;

3 interface Axis Acceleration Servo;

4 interface Axis Commanded Output;

5 interface Axis Dyn;

6 interface Axis Error And Enable;

7 interface Axis Force Servo;

8 interface Axis Homing;

9 interface Axis Increment Pos;

10 interface Axis Kinematics;

11 interface Axis Jogging;

12 interface Axis Limits;

13 interface Axis Maint;

14 interface Axis Operation;

15 interface Axis Positioning Servo;

16 interface Axis Rates;

17 interface Axis Sensed State;

18 interface Axis Setup;

19 interface Axis Velocity Servo;

20

21 typedef double Axis Accel Cmd;

22 typedef double Axis Force Cmd;

23 typedef double Axis Position Cmd;

24 typedef double Axis Velocity Cmd;

25

26 interface Axis : OMAC MODULE

27 f

28 // Get Reference Objects

29 // Axis Absolute Pos get absolute position(); // removed 23-Jun-1997

30 Axis Acceleration Servo get acceleration servo();

31 Axis Commanded Output get command output();

32 Axis Error And Enable get error and enable();

33 Axis Force Servo get force servo();

34 Axis Homing get homing();

45

35 Axis Increment Pos get increment position();

36 Axis Jogging get jogging();

37 Axis Positioning Servo get positioning servo();

38 Axis Sensed State get sensed state();

39 Axis Velocity Servo get velocity servo();

40

41 void set acceleration servo(Axis Acceleration Servo);

42 void set command output(Axis Commanded Output);

43 void set error and enable(Axis Error And Enable);

44 void set force servo(Axis Force Servo);

45 void set homing(Axis Homing);

46 void set increment position(Axis Increment Pos);

47 void set jogging(Axis Jogging);

48 void set positioning servo(Axis Positioning Servo);

49 void set sensed state(Axis Sensed State);

50 void set velocity servo(Axis Velocity Servo);

51

52 long processServoLoop(); // the primary function.

53 long check preconditions(); // checked at every servo loop.

54

55 // State transition methods and state queries

56

57 void disable axis(); // DISABLE EVENT

58 void enable axis(); // ENABLE EVENT

59 void e stop(); // E STOP EVENT

60 void follow command position(); // FOLLOW POSITION EVENT

61 void follow command torque(); // FOLLOW TORQUE EVENT

62 void follow command velocity(); // FOLLOW VELOCITY EVENT

63 void follow command force(); // FOLLOW FORCE EVENT

64 void home(double velocity); // START HOME EVENT

65 void jog(double velocity); // START JOG EVENT

66 void reset axis(); // RESET EVENT

67 void stop motion(); // CANCEL EVENT

68 void update axis(); // UPDATE EVENT

69

70 // Returns a ASCII readable string

71 String current state name();

72

73 // Instead of:

74 // int current state();

75 // DISABLED = 1,

76 // ENABLED = 2,

77 // E STOPPED = 3,

78 // FOLLOWING POSITION = 4,

79 // FOLLOWING TORQUE = 5,

80 // FOLLOWING VELOCITY = 6,

81 // HOMING = 7,

82 // JOGGING = 8,

46

83 // STOPPING = 9;

84

85 // Use accessor functions so there is no confusion about numbering

86 // Also inherit state queries from OMAC Base Module

87 boolean is following acceleration();

88 boolean is following force();

89 boolean is following position();

90 boolean is following velocity();

91 boolean is homing();

92 boolean is incrementing position();

93 boolean is jogging();

94 boolean is movingto();

95 g;

96 interface Axis Acceleration Servo

97 f

98 // All invoked by Axis FSM

99 boolean acceleration servo error();

100 void acceleration error action();

101 void acceleration update action();

102 void end acceleration following action();

103 void start acceleration following action();

104 g;

105 interface Axis Commanded Output

106 f

107 Axis Position Cmd get position command();

108 Axis Velocity Cmd get velocity command();

109 Axis Accel Cmd get acceleration command();

110 Axis Force Cmd get force command();

111

112 void set position command(Axis Position Cmd positioning cmd);

113 void set velocity command(Axis Velocity Cmd velocity cmd);

114 void set acceleration command(Axis Accel Cmd acceleration cmd);

115 void set force command(Axis Force Cmd force cmd);

116

117 void update commanded output(); // updates using connections to IO

118

119 g;

120 interface Axis Dyn

121 f

122 attribute Force staticFriction;

123 attribute Force runFriction;

124 attribute Time timeConstant;

125 attribute Length backlash;

126 attribute Length deadband;

127 attribute Mass axmass;

128

129 attribute LinearAcceleration accelerationLimit;

130 attribute LinearAcceleration decelerationLimit;

47

131 attribute LinearJerk jerkLimit;

132 attribute LinearAcceleration zeroVelAccLim;

133 attribute LinearAcceleration maxVelAccLim;

134

135 attribute Length overshootStepInput;

136 attribute Time risingTimeStepInput;

137 attribute Force quasiStaticLoadLimit;

138 attribute LinearStiffness loadedCaseSpringRate;

139 attribute LinearStiffness worstCaseSpringRate;

140 attribute Mass inertia;

141 attribute Force damping;

142

143 g;

144 interface Axis Error And Enable

145 f

146 void reset axis action();

147 void disable axis action();

148 void enable axis action();

149 void e stop axis action();

150 g;

151 interface Axis Force Servo

152 f

153 // All invoked by Axis FSM

154 boolean force servo error();

155 void force error action();

156 void force update action();

157 void end force following action();

158 void start force following action();

159 g;

160

161 interface Axis Homing

162 f

163 void start homing action(double start velocity); // prepares homing

164 void homing update action(); // called each servo cycle

165 void stop homing action(); // stops homing before completion

166 void homing complete action(); // On transition from homing to Enabled

167 // { when homing is completed

168 void e stop homing action(); // On transition from homing to E-stopped

169 void disable homing action(); // On transition from homing to disabled

170 boolean is done(); // signals when homing is completed

171 boolean is stopping();

172 boolean homing error(); // true if error has occurred during homing

173 g;

174 interface Axis Jogging

175 f

176 void start jogging action(double target velocity);

177 void jogging update action();

178 void stop jogging action();

48

179 boolean is done();

180 boolean is stopping();

181 boolean jogging error();

182 void e stop homing action();

183 void disable homing action();

184 g;

185 interface Axis Kinematics

186 // Provision for lower kinematic model and upper kinematic

187 // model consistent with ISO STEP standard.

188

189 // Include services for characterizing these errors :

190

191 // Include provision for

192 // - geometric errors of motion

193 // - thermally induced errors

194

195 // The posFeedBackGain and the velFeedBackGain are

196 // calculated using the connectivity of the jointCompts.

197

198 // The basic synthesis model is the ISO standard for

199 // kinematic modeling, which is close to the D-H model

200 // which had its genesis in robotics, priimarily oriented

201 // toward a single robotic device. Since manufacturing

202 // equipment could consist of multiple such devices working

203 // on a single workpiece or a set of workpieces, we extend

204 // the ISO kinematic model, to provide for the inclusion of

205 // kinematic models for �xtures, workpieces, and tooling.

206 // The D-H model is also extended to include kinematic

207 // errors of motion, the composed property of interest is

208 // the motion of the work-point as a result of motions of

209 // the Axis (or vice versa). The kinematics model also

210 // supports the model of dynamics and states.

211 f

212 attribute double Ks;

213 attribute double posFeedBackGain;

214 attribute double velFeedBackGain;

215 attribute UpperKinematicModel ukm;

216 attribute LowerKinematicModel lkm;

217 attribute CoordinateFrame placement;

218 g;

219 interface Axis Limits

220 //Limits to Motions Ranges

221 f

222 // Misc. parameters

223 attribute LinearVelocity maxVelocity;

224 attribute LinearJerk JerkLimit;

225 attribute Force maxForceLimit;

226

49

227 attribute Length usefulTravel;

228 attribute Length cutOffPosition;

229

230 // Following Error levels: warning, limit, violation

231 attribute Length warnLevelFollError;

232 attribute Length followingErrorViolationLim;

233 attribute Length followingErrorWarnLim;

234 attribute Length followingErrorWarnAmt;

235

236 // Overshoot Error Levels: warning, limit, violation

237 attribute Length overshootWarnLevelLimit;

238 attribute Length overshootLimit;

239 attribute Length overshootViolationLim;

240 // Amount of overshoot

241 attribute Length overshootWarnLevelAmt;

242

243 // Underreach Error Levels: warning, limit, violation

244 attribute Length underreachWarnLevelLimit;

245 attribute Length underreachLimit;

246 attribute Length underreachViolationLim;

247 // Amount of undershoot

248 attribute Length underreachtWarnLevelAmt;

249

250 // OverTravel Limits

251 attribute Length softFwdOTravelLim;

252 attribute Length softRevOTravelLim;

253 attribute Length hardFwdOTravelLim;

254 attribute Length hardRevOTravelLim;

255 g;

256

257 interface Axis Maint

258 // Provision for data and operations that support

259 // maintenance, e.g. health-tests, health-monitoring.

260 f

261 // Originally � pointer

262 attribute MaintHistory mh;

263 g;

264 interface Axis Positioning Servo

265 f

266 // All invoked by Axis FSM

267 boolean positioning servo error();

268 void positioning error action();

269 void positioning update action();

270 void end positioning following action();

271 void start positioning following action();

272 g;

273 interface Axis Rates

274 f

50

275 //Speci�cations of travel capabilities.

276 //worst-case conditions. But to take advantage of more

277 //capability provide a model that describes conditions

278 //when more capability is available and the corresponding

279 //values or value-functions.

280

281 attribute Length maxTravel;

282 attribute LinearVelocity maxVelocity;

283 attribute LinearAcceleration maxAcceleration;

284 attribute LinearJerk maxjerk;

285 attribute Length posErrRatioIdleStationary;

286 attribute Length posErrRatioIdleMoving;

287 attribute Length posErrRatioCutStationary;

288 attribute Length posErrRatioCutMoving;

289 attribute long repeatability;

290 g;

291 interface Axis Sensed State

292 f

293

294 //if(!hardFwdOTravel) && if(!softFwdOTravel) &&if(!hardRevOTravel) &&

295 // if(!softRevOTravel)

296 //then enablingPrecondition = 1;

297 //else enablingPrecondition = 0;

298 // Concurrency: Sequential

299 Boolean getEnablingPrecondition();

300 void setEnablingPrecondition();

301

302 attribute Boolean inPosition;

303 attribute Boolean softFwdOTravel;

304 attribute Boolean hardFwdOTravel;

305 attribute Boolean softRevOTravel;

306 attribute Boolean hardRevOTravel;

307 attribute Boolean followingErrorWarn;

308 attribute Boolean followingErrorViolation;

309 attribute Boolean overShootViolation;

310 attribute Boolean enablingPrecondition;

311

312 // Addition 12/12/96

313 Axis Position get actual position();

314 Axis Velocity get actual velocity();

315 Axis Accel get actual acceleration();

316 Axis Force get actual force();

317 g;

318 interface Axis Setup

319 //Services perparatory to automatic cyclic operation. Data that can be supplied

320 // before arrival of current motion command.

321 f

322 // FIXME: 23-Jun-1997 Sort out

51

323 // sets the reference to the axis rates for physical limits, software limits.

324 attribute AxRates physicalLimits;

325 attribute AxRates currentRates;

326 attribute AxDyn AxD;

327 attribute MOT OBJ motionObjective;

328 g;

329 interface Axis Velocity Servo

330 f

331 // All invoked by Axis FSM

332 boolean velocity servo error();

333 void velocity error action();

334 void velocity update action();

335 void end velocity following action();

336 void start velocity following action();

337 g;

4.11 Control Law

1 interface CONTROL LAW

2 f

3 // Parameters

4 void set commanded(double setpoint);

5 double get commanded();

6

7 void set commanded dot(double setpointdot);

8 double get commanded dot();

9

10 void set commanded dot dot(double setpointdotdot);

11 double get commanded dot dot();

12

13 void set output(double value);

14 double get output();

15

16 void set feedback(double actual);

17 double get feedback();

18

19 void set following error(double epsilon);

20 double get following error();

21

22 // O�sets

23 void set following error offset(double preoffset);

24 double get following error offset();

25

26 void set output offset(double postoffset);

27 double get output offset();

28

29 void set feedback offset(double postoffset);

30 double get feedback offset();

52

31

32 void set tune in(double value); // enable with break loop

33 double get tune in();

34

35

36 // Operations

37 Status calculate control cmd(); // calculate next output

38 Status init(); // clear time history

39 break loop(); // force tuning inputs

40 make loop(); // enable loop closure

41 g;

42

43 // PID Extension

44 interface PID TUNING

45 f

46 // Attributes

47 double get Kp();

48 double get Ki();

49 double get Kd();

50

51 void set Kp(double val);

52 void set Ki(double val);

53 void set Kd(double val);

54

55 double get Kcommanded();

56 double get kcommanded dot();

57 double get Kcommanded dot dot();

58 double get Kfeedback();

59

60 void set Kcommanded(double val);

61 void set kcommanded dot(double val);

62 void set Kcommanded dot dot(double val);

63 void set Kfeedback(double val);

64 g;

65

66 // Example 1: Software Interfacce to PID Hardware Board

67 // NULL CONTROL AW has same api but does not cause any action

68 //interface PIDHard: NULL CONTROL LAW, PID TUNING;

69 // Example 2: Software PID implementation

70 //interface PIDSoft: CONTROL LAW, PID TUNING;

4.12 Human Machine Interface

1 interface HMI :

2 f

3 // Presentation Methods

4 void present error view();

5 void present operational view();

53

6 void present setup view();

7 void present maintenance view();

8

9 // Events - to alert HMI that something has happened

10 void update current view();

11 g;

12

4.13 Process Model

1 // Level 1

2 interface ProcessModel

3 f

4 OacVector get user coordinate offsets();

5 void get user coordinate offsets(OacVector offsets);

6 OacVector get axes coordinate offsets(); // used by axes group

7 void get axes coordinate offsets(OacVector offsets); // set by sensor process

8 Measure get feedrate override value(); // used by axisgroup

9 void set feedrate override value(Measure feed); // used by hmi

10 Measure get spindle override value(); // used by axisgroup

11 void set spinlde override value(Measure feed); // used by hmi

12 g;

13

4.14 Kinematics

1 // 23-Jun-1997 : Level 1 removed

2

3 interface KinStructure

4 f

5 CoordinateFrame get placement frame();

6 void set placement frame(CoordinateFrame value);

7

8 CoordinateFrame get baseFrame();

9 void set baseFrame(CoordinateFrame value);

10 g;

11 interface Connection

12 f

13 public:

14 KinStructure � get from();

15 void set from(KinStructure � value);

16

17 KinStructure � get to();

18 void set to(KinStructure � value);

19

20 CoordinateFrame get placement();

21 void set placement(CoordinateFrame value);

22 g;

54

23

24 // FIXME: A template would map into IDL sequence

25 typedef RWTPtrSlist<Connection> Connections;

26

27 // Last update: 18-Jun-1997 Sushil Birla, Steve Sorensen

28

29 interface KinMechanism

30 f

31 void forward kinematic transform(Connections &);

32 OacVector � inverse kinematic transform(CoordinateFrame &)

33

34 Connections get Connections();

35 void set Connections(Connections value);

36

37 KinMechanisms get KinMechanisms();

38 void set KinMechanisms(KinMechanisms value);

39 g;

40

41 // FIXME: A template would map into IDL sequence

42 typedef RWTPtrSlist<KinMechanism> KinMechanisms;

43

44 // FIXME: add graph/tree traversal functions

45

46 // Notes:

47 // 1. For various specilizations of inverse Kinematic Transform()

48 // Specialize KinMechanism and extend as needed.

4.15 Machine to Machine Interface

This is an outline of the �nal speci�cation.

1 // MMSDEFS.IDL

2 // General de�nitions

3

4 typedef string<32> MMSIdentifier;

5 // CORBA does not seem to have an identi�er type

6 // The MMSIdenti�er consists of a string of characters selected from

7 // the letters a-z, the letters A-Z, the digits 0-9, and the underscore

8 // character. The MMSIdenti�er must begin with an alphabetic character.

9 // The MMSidenti�er is case sensitive.

10

11 // mmssverr.idl

12 // idl de�nitions for mms service errors

13 // see ISO 9506-2:1990 clause 7.5.5 ServiceError

14

15 #include mmsspdef.idl

16 // mms supporting de�nitions - to get ObjectName

17

18 #include mmspidef.idl

55

19 // mms program invocation de�nitions - to get ProgramInvocationState

20

21 #include mmsfidef.idl

22 // mms �le de�nitions - to get FileSource

23

24 enum VMD STATE ERROR CODE f

25 vmd other,

26 vmd state conflict,

27 vmd operational conflict,

28 domain transfer problem,

29 state machine id invalid

30 g;

31

32 enum APPLICATION REFERENCE ERROR CODE f

33 application reference other,

34 application unreachable,

35 connection lost,

36 application reference invalid,

37 context unsupported

38 g;

39

40 enum DEFINITION ERROR CODE f

41 definition other,

42 object undefined,

43 invalid address,

44 type unsupported,

45 type inconsistent,

46 object exists,

47 object attribute inconsistent

48 g;

49

50 enum RESOURCE ERROR CODE f

51 resource other,

52 memory unavailable,

53 processor resource unavailable,

54 mass storage unavailable,

55 capability unavailable,

56 capability unknown

57 g;

58

59 enum SERVICE ERROR CODE f

60 service other,

61 primitives out of sequence,

62 object state conflict,

63 service reserved,

64 continuation invalid,

65 object constraint conflict

66 g;

56

67

68 enum SERVICE PREEMPT ERROR CODE f

69 service preempt other,

70 timeout,

71 deadlock,

72 cancel

73 g;

74

75 enum TIME RESOLUTION ERROR CODE f

76 time resolution other,

77 unsupportable time resolution

78 g;

79

80 enum ACCESS ERROR CODE f

81 access other,

82 object access unsupported,

83 object non existent,

84 object access denied,

85 object invalidated

86 g;

87

88 enum INITIATE ERROR CODE f

89 initiate other,

90 initiate reserved 1,

91 initiate reserved 2,

92 max services outstanding calling insufficient,

93 max services outstanding called insufficient,

94 service CBB insufficient,

95 nesting level insufficient

96 g;

97

98 enum CONCLUDE ERROR CODE f

99 conclude other,

100 further communication required

101 g;

102

103 enum CANCEL ERROR CODE f

104 cancel other,

105 invoke id unknown,

106 cancel not possible

107 g;

108

109 enum FILE ERROR CODE f

110 file other,

111 filename ambiguous,

112 file busy,

113 filename syntax error,

114 content type invalid,

57

115 position invalid,

116 file access denied,

117 file non existent,

118 duplicate filename,

119 insufficient space in filestore

120 g;

121

122 typedef long OTHERS ERROR CODE // ��� note restriction (long)

123

124 // place holder for companion standard errors

125 enum CS ERROR CODE f

126 g;

127

128 enum SERVICE SPECIFIC CHOICES f

129 obtain file,

130 start,

131 stop,

132 resume,

133 reset,

134 deleteVariableAccess,

135 deleteNamedVariableAccess,

136 deleteNamedVariableList,

137 deleteNamedType,

138 defineEventEnrollment Error,

139 fileRename,

140 additionalService // reserved for companion standards

141 g;

142

143 union SERVICE SPECIFIC switch(SERVICE SPECIFIC CHOICES) f

144 case obtain file : OBTAIN FILE ERROR obtain file error;

145 case start : START ERROR start error;

146 case stop : STOP ERROR stop error;

147 case resume : RESUME ERROR resume error;

148 case reset : RESET ERROR reset error;

149 case deleteVariableAccess :

150 DELETE VARIABLE ACCESS ERROR delete variable access error;

151 case deleteNamedVariableAccess:

152 DELETE NAMED VARIABLE ACCESS ERROR delete named variable access error;

153 case deleteNamedVariableList :

154 DELETE NAMED VARIABLE LIST ERROR delete named variable list error;

155 case deleteNamedType :

156 DELETE NAMED TYPE ERROR delete named type error;

157 case defineEventEnrollment Error :

158 DEFINE EVENT ENROLLMENT ERROR define event enrollment error;

159 case fileRename : FILE RENAME ERROR file rename error;

160 case additionalService :

161 ADDITIONAL SERVICE ERROR additional service error;

162 default : long dummy; // service speci�c info not present

58

163 g;

164

165

166 typedef FileSource OBTAIN FILE ERROR;

167 typedef ProgramInvocationState START ERROR;

168 typedef ProgramInvocationState STOP ERROR;

169 typedef ProgramInvocationState RESUME ERROR;

170 typedef ProgramInvocationState RESET ERROR;

171 typedef unsigned long DELETE VARIABLE ACCESS ERROR;

172 typedef unsigned long DELETE NAMED VARIABLE ACCESS ERROR;

173 typedef unsigned long DELETE NAMED VARIABLE LIST ERROR;

174 typedef unsigned long DELETE NAMED TYPE ERROR;

175 typedef ObjectName DEFINE EVENT ENROLLMENT ERROR;

176 // enum FILE RENAME ERROR f source �le, destination �le g;

177 typedef FileSource FILE RENAME ERROR;

178 typedef unsigned long ADDITIONAL SERVICE ERROR;

179 // The ADDITIONAL SERVICE ERROR really should be NULL

180 // Can I do that in IDL?

181

182 exception vmd state error f

183 VMD STATE ERROR CODE error code;

184 long additional code; // note restriction (long)

185 string additional description;

186 SERVICE SPECIFIC service specific;

187 g;

188

189 exception application reference error f

190 APPLICATION REFERENCE ERROR CODE error code;

191 long additional code; // note restriction (long)

192 string additional description;

193 SERVICE SPECIFIC service specific;

194 g;

195

196 exception definition error f

197 DEFINITION ERROR CODE error code;

198 long additional code; // note restriction (long)

199 string additional description;

200 SERVICE SPECIFIC service specific;

201 g;

202

203 exception resource error f

204 RESOURCE ERROR CODE error code;

205 long additional code; // note restriction (long)

206 string additional description;

207 SERVICE SPECIFIC service specific;

208 g;

209

210 exception service error f

59

211 SERVICE ERROR CODE error code;

212 long additional code; // note restriction (long)

213 string additional description;

214 SERVICE SPECIFIC service specific;

215 g;

216

217 exception service preempt error f

218 SERVICE PREEMPT ERROR CODE error code;

219 long additional code; // note restriction (long)

220 string additional description;

221 SERVICE SPECIFIC service specific;

222 g;

223

224 exception time resolution error f

225 TIME RESOLUTION ERROR CODE error code;

226 long additional code; // note restriction (long)

227 string additional description;

228 SERVICE SPECIFIC service specific;

229 g;

230

231 exception access error f

232 ACCESS ERROR CODE error code;

233 long additional code; // note restriction (long)

234 string additional description;

235 SERVICE SPECIFIC service specific;

236 g;

237

238 exception initiate error f

239 INITIATE ERROR CODE error code;

240 long additional code; // note restriction (long)

241 string additional description;

242 SERVICE SPECIFIC service specific;

243 g;

244

245 exception conclude error f

246 CONCLUDE ERROR CODE error code;

247 long additional code; // note restriction (long)

248 string additional description;

249 SERVICE SPECIFIC service specific;

250 g;

251

252 exception cancel error f

253 CANCEL ERROR CODE error code;

254 long additional code; // note restriction (long)

255 string additional description;

256 SERVICE SPECIFIC service specific;

257 g;

258

60

259 exception file error f

260 FILE ERROR CODE error code;

261 long additional code; // note restriction (long)

262 string additional description;

263 SERVICE SPECIFIC service specific;

264 g;

265

266 exception others error f

267 OTHERS ERROR CODE error code;

268 long additional code; // note restriction (long)

269 string additional description;

270 SERVICE SPECIFIC service specific;

271 g;

272

273 exception cs error f

274 CS ERROR CODE error code;

275 long additional code; // note restriction (long)

276 string additional description;

277 SERVICE SPECIFIC service specific;

278 g;

279

280 #include "mmssverr.idl"

281 // To get errorcode de�nitions

282

283 // VMDSupport interface

284 interface VMDSupport f

285

286 // methods - Status, UnsolicitedStatus, GetNameList,

287 // Identify, GetCapabilityList

288

289 // De�nitions for Status and UnsolicitedStatus

290

291 enum VMDLogicalStatus f

292 STATE CHANGES ALLOWED,

293 NO STATE CHANGES ALLOWED,

294 LIMITED SERVICES PERMITTED,

295 SUPPORT SERVICES ALLOWED

296 g;

297

298 enum VMDPhysicalStatus f

299 OPERATIONAL,

300 PARTIALLY OPERATIONAL,

301 INOPERABLE,

302 NEEDS COMMISSIONING

303 g;

304

305 typedef sequence <boolean,128> VMDLocalDetail;

306

61

307 struct Status Response f

308 VMDLogicalStatus lstat;

309 VMDPhysicalStatus pstat;

310 VMDLocalDetail ldetail;

311 g;

312

313 typedef boolean Status Request;

314

315 void Status(in Status Request req, out Status Response rsp)

316 raises(resource error, service error, service preempt error,

317 access error, others error);

318

319 void UnsolicitedStatus(in Status Response rsp);

320

321 // De�nitions for GetNameList

322

323 enum VMDObjectClassChoices f VMDOBJECTCLASS, VMDCSOBJECTCLASS g;

324

325 enum VMDOBJECTCLASSES f namedVariable, scatteredAccess,

326 namedVariableList, nameType, semaphore,

327 eventCondition, eventAction, eventEnrollment,

328 journal, domain, programInvocation,

329 operatorStation g;

330

331 union VMDExtendedObjectClass switch(VMDObjectClassChoices) f

332 case VMDOBJECTCLASS : VMDOBJECTCLASSES oc;

333 case VMDCSOBJECTCLASS : int dummy;

334 g;

335

336 enum VMDObjectScopeChoices f

337 vmdSpecific,

338 domainSpecific,

339 aaSpecific

340 g;

341

342 union VMDObjectScope switch(VMDObjectScopeChoices)

343 f

344 case vmdSpecific : int dummy;

345 case domainSpecific: MMSIdentifier id;

346 case aaSpecific: int dummy;

347 g;

348

349 struct GetNameList Request f

350 VMDExtendedObjectClass class;

351 VMDObjectScope scope;

352 MMSIdentifier continueAfter;

353 g;

354

62

355 struct GetNameList Response f

356 sequence <MMSIdentifier> listOfIdentifier;

357 boolean moreFollows;

358 g;

359

360 void GetNameList(in GetNameList Request req,

361 out GetNameList Response rsp)

362 raises(vmd state error, resource error, service error,

363 service preempt error, access error, others error);

364

365 // De�nitions for Identify

366

367 typedef int Identify Request;

368

369 struct Identify Response f

370 string<64> vendorName;

371 string<16> modelName;

372 string<16> revision;

373 sequence <MMSObjectIdentifier> listOfAbstractSyntaxes;

374 g;

375

376 void Identify(in Identify Request req, out Identify Response rsp)

377 raises(resource error, service error, service preempt error,

378 access error, others error);

379 g;

380

381 interface VMDSupport; // Corresponds to Remote device veri�cation and probing

382 interface VariableAccess; // Corresponds to Polled Data Acquisition, Programmed

383 // data acquistion, and parametric control

384 interface FileAccess; // No correspondence in IEC 1131-5

385 interface ResourceManagement; // Corresponds to Application Program Transfer

386 interface ProgramInvocation; // Corresponds to Program execution and IO control

387 interface OperatorCommunication; // No correspondence in IEC 1131-5

388 interface SemaphoreManagement; // Corresponds to Application Program Synch.

389 interface EventManagement; // Corresponds to Alarm noti�cation

390 interface Journal Management; // No correspondence in IEC 1131-5

391

392 interface VMDSupport f

393 void Status(in req, out rsp);

394 void UnsolicitedStatus(in req, out rsp);

395 void GetNameList(in req, out rsp);

396 void Identify(in req, out rsp);

397 void GetCapabilityList(in req, out rsp);

398 g;

399

400 interface VariableAccess f

401 void Read(in req, out rsp);

402 void Write(in req, out rsp);

63

403 void InformationReport(out rsp);

404 void GetVariableAccessAttributes(in req, out rsp);

405 g;

406

407 interface FileAccess f

408 void FileDirectory(in req, out rsp);

409 void ObtainFile(in req, out rsp);

410 void FileOpen(in req, out rsp);

411 void FileRead(in req, out rsp);

412 void FileClose(in req, out rsp);

413 void FileRename(in req, out rsp);

414 void FileDelete(in req, out rsp);

415 g;

416

417 interface ResourceManagement f

418 void ResourceDownload(in req, out rsp);

419 void ResourceUpload(in req, out rsp);

420 void RequestResourceDownload(in req, out rsp);

421 void RequestResourceUpload(in req, out rsp);

422 void ResourceLoad(in req, out rsp);

423 void ResourceStore(in req, out rsp);

424 void ResourceDelete(in req, out rsp);

425 void GetResourceAttributes(in req, out rsp);

426 g;

427

428 interface ProgramInvocation f

429 void CreateProgramInvocation(in req, out rsp);

430 void DeleteProgramInvocation(in req, out rsp);

431 void Start(in req, out rsp);

432 void Stop(in req, out rsp);

433 void Resume(in req, out rsp);

434 void Reset(in req, out rsp);

435 void Kill(in req, out rsp);

436 void GetProgramInvocationAttributes(in req, out rsp);

437 g;

438

439 interface OperatorCommunication f

440 void input(in req, out rsp);

441 void output(in req, out rsp);

442 g;

443

444 interface SemaphoreManagement f

445 void TakeControl(in req, out rsp);

446 void RelinquishControl(in req, out rsp);

447 void ReportSemaphoreStatus(in req, out rsp);

448 void ReportSempahoreEntryStatus(in req, out rsp);

449 g;

450

64

451 interface EventManagement f

452 void EventNotification(in req, out rsp);

453 void AcknowledgeEventNotification(in req, out rsp);

454 g;

455

456 interface Journal Management f

457 void InitializeJournal(in req, out rsp);

458 void WriteJournal(in req, out rsp);

459 void ReadJournal(in req, out rsp);

460 void GetJournalStatus(in req, out rsp);

461 g;

462

References

[Alb91] J.S. Albus. Outline for a theory of intelligence. IEEE Transactions on Systems, Man, and Cyber-
netics, 21(3), may/june 1991.

[COR91] Object Management Group, Framingham, MA. Object Management Architecture Guide, Docu-
ment 92.11.1, 1991.

[DCO] Distributed Common Object Model.
See Web URL: http://www.microsoft.com/oledev/olemkt/oledcom/dcom95.htm.

[IEC93] International Electrical Commission, IEC, Geneva. Programmable controllers Part 3 Programming
Languages, IEC 1131-3, 1993.

[Inta] International Organization for Standardization. ISO 10303-42 Industrial Automation Systems and
Integration Product Data Representation and Exchange - Part 42: Integrated Resources: Geometric
and Topological Representation.

[Intb] International Organization for Standardization. ISO 10303-42 Industrial Automation Systems
and Integration Product Data Representation and Exchange - Part 105: Integrated Application
Resources: Kinematics.

[M.S86] M.Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy Principle. In 6th
International Conference on Distributed Computing Systems, pages 198{204. IEEE Computer So-
ciety Press, May 1986.

[NGI] Next Generation Inspection System (NGIS).
See Web URL: http://isd.cme.nist.gov/brochure/NGIS.html.

[OMA94] Chrysler, Ford Motor Co. , and General Motors. Requirements of Open, Modular, Architecture
Controllers for Applications in the Automotive Industry, December 1994. White Paper { Version
1.1.

[OSA96] OSACA. European Open Architecture E�ort.
See Web URL: http://www.isw.uni-stuttgart.de/projekte/osaca/english/osaca.htm, 1996.

[PM93] F. M. Proctor and J.L. Michaloski. Enhanced Machine Controller Architecture Overview. Tech-
nical Report 5331, National Institute of Standards and Technology, December 1993.

[SOS94] National Center for Manufacturing Sciences. Next Generation Controller (NGC) Speci�cation for
an Open System Architecture Standard (SOSAS), August 1994. Revision 2.5.

65

Table 1: Simpli�ed hypothetical state transition table for LUNL

CurrentState Event Action NextState

LUNL returned Advance unloader [1] obj1� >execute(. . .) UNL advancing
Advance loader [1] obj2� >execute(. . .) L advancing

UNL advancing Overtime [2] obj3� >execute(. . .) Exception
Unloader is advanced [2] obj4� >execute(. . .) UNL advanced

UNL advanced Return unloader [1] obj5� >execute(. . .) UNL returning
UNL returning Overtime [2] obj6� >execute(. . .) Exception

Unloader is returned obj7� >execute(. . .) LUNL returned
L advancing Overtime [2] obj8� >execute(. . .) Exception

Loader is advanced [2] obj9� >execute(. . .) L advanced
L advanced Return loader [1] obj10� >execute(. . .) L returning
L returning Overtime [2] obj11� >execute(. . .) Exception

Unloader is returned [2] obj12� >execute(. . .) LUNL returned
Exception Reset exception [1] obj13� >execute(. . .) LUNL returned
. obji� >execute(. . .) . . .

Column explanations:

\LUNL returned" is the starting state, indicating L, UNL are \home".

Event sources indications: [1] MC, [2] DeviceControllerOno�

Actions include functions of objects in the DeviceControllerOno� module, as speci�ed in obji� >execute(. . .) 8i, e.g.,

- get sensed inputs

- check conditions, e.g., \over time limit"

- set actuation outputs

- send LUNL state

Terminology used in the OMAC FSM model:

Transition: The quadruple (event, condition, action, next state);

where \condition" is omitted in this table for simplicity.

CurrentState and NextState are ProcessState objects.

StateRecord: A ProcessState object and its associated Transition objects.

STtable: Container class for a collection of StateRecord objects.

66

